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Abstract In the recent years, there has been an increasing interest in discontinuous

Galerkin time domain (DGTD) methods for the numerical modeling of electromag-

netic wave propagation. Such methods most often rely on explicit time integration

schemes which are constrained by a stability condition that can be very restrictive

on highly refined meshes. In this paper, we report on some efforts to design a hybrid

explicit–implicit DGTD method for solving the time domain Maxwell equations

on locally refined simplicial meshes. The proposed method consists in applying an

implicit time integration scheme locally in the refined regions of the mesh while

preserving an explicit time scheme in the complementary part.

1 Introduction

Nowadays, a variety of methods exist for the numerical treatment of the time

domain Maxwell equations, ranging from the well established and still prominent

finite difference time domain (FDTD) methods based on Yee’s scheme to the more

recent finite element time domain (FETD) and discontinuous Galerkin time domain

(DGTD) methods. The latter are very well adapted to local mesh refinement but at

the expense of a restrictive time step in order to preserve the stability of the explicit

time integration schemes. In the first one, a local time stepping strategy is combined

to an explicit time integration scheme, while the second approach relies on the use

of an implicit or a hybrid explicit–implicit time integration scheme. In the present

work, we consider the second approach.
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Explicit–implicit methods for the solution of the system of Maxwell equations

have been studied by several authors with the shared goal of designing numerical

methodologies able to deal with hybrid structured-unstructured meshes. For exam-

ple, a stable hybrid FDTD–FETD method is considered by Rylander and Bondeson

in [8], while Degerfeldt and Rylander [3] propose a FETD method with stable

hybrid explicit–implicit time stepping working on brick-tetrahedral meshes that do

not require an intermediate layer of pyramidal elements. In [6], the authors study

the application of explicit–implicit Runge–Kutta (so-called IMEX-RK) methods in

conjunction with high order discontinuous Galerkin discretizations on unstructured

triangular meshes, in the framework of unsteady compressible flow problems (i.e.,

the numerical solution of Euler or Navier–Stokes equations).

This study is concerned with the design of a non-dissipative hybrid explicit–

implicit DGTD method for solving the time domain Maxwell equations on unstruc-

tured simplicial meshes. The hybrid explicit–implicit DGTD method considered

here has been initially introduced by Piperno [7]. However, to our knowledge, this

hybrid explicit–implicit DGTD method has not been investigated numerically so far

for the simulation of realistic electromagnetic wave propagation problems. The rest

of the paper is organized as follows: in Sect. 2, we state the initial and boundary

value problem to be solved; the discretization in space by a discontinuous Galerkin

method is discussed in Sect. 3 while the integration in time is considered in Sect. 4;

numerical results and conclusions are respectively reported in Sect. 5.

2 Continuous Problem

We consider the Maxwell equations in three space dimensions for linear isotropic

media with no source. The electric and magnetic fields E.x; t/ and H.x; t// verify:

"@t E � curlH D �J; �@t H C curlE D 0; (1)

where J.x; t/ is a current source term. These equations are set on a bounded poly-

hedral domain˝ of R
3. The permittivity ".x/ and the magnetic permeability tensor

�.x/ are varying in space, time-invariant and both positive functions. Our goal is to

solve system (1) in a domain ˝ with boundary @˝ D �a [ �m, where we impose

the following boundary conditions:

8
<̂

:̂

n � E D 0 on �m;

n � E �

r
�

"
n � .H � n/ D n � Einc �

r
�

"
n � .Hinc � n/ on �a:

(2)

Here n denotes the unit outward normal to @˝ and .Einc;Hinc/ is a given incident

field. The first boundary condition is called metallic (referring to a perfectly con-

ducting surface) while the second condition is called absorbing and takes here the
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form of the Silver–Müller condition which is a first order approximation of the exact

absorbing boundary condition. This absorbing condition is applied on �a which rep-

resents an artificial truncation of the computational domain. Finally, system (1) is

supplemented with initial conditions: E0.x/ D E.x; t/ and H0.x/ D H.x; t/.

3 Discretization in Space

We consider a partition Th of˝ into a set of tetrahedra �i of size hi with boundary

@�i such that h D max�i 2Th
hi . For each �i , Vi denotes its volume, and "i and�i are

respectively the local electric permittivity andmagnetic permeability of the medium,

which are assumed constant inside the element �i . For two distinct tetrahedra �i and

�k in Th, the intersection �i \ �k is a triangle aik which we will call interface. For

a given partition Th, we seek approximate solutions to (1) in the finite dimensional

subspace Vp.Th/ D fv 2 L2.˝/3 W vk j�i
2 Pp.�i/; for k D 1; 3 and 8�i 2 Thg

where Pp.�i / denotes the space of nodal polynomial functions of degree at most p

inside the element �i . Following the discontinuous Galerkin approach, the electric

and magnetic fields inside each finite element are searched for as linear combina-

tions .Ei ;Hi / of linearly independent basis vector fields 'ij ; 1 � j � d , where

d denotes the local number of degrees of freedom inside �i . The discretization in

space yields the following system of ODEs:

M "
i

dEi

dt
D Ki Hi �

X

k2Vi

SikHk; M
�
i

dHi

dt
D �Ki Ei C

X

k2Vi

SikEk ; (3)

where the symmetric positive definite mass matricesM �
i (� stands for " or �), the

symmetric stiffness matrix Ki and the symmetric interface matrix Sik (all of size

d � d ) are given by:

.M �
i /jl D �i

R
�i

t
'ij � 'i l ; .Sik/jl D

1

2

R
aik

t
'ij � .'kl � nik/;

.Ki/jl D
1

2

R
�i

t
'ij � curl'i l C t

'i l � curl'ij :

4 Time Discretization

The choice of the time discretization method is a crucial step for the global effi-

ciency of the numerical method. Then, a possible alternative is to combine the

strengths of explicit (easy to implement, greater accuracy with less computational

effort) and implicit schemes (unconditional stability) applying an implicit time inte-

gration scheme locally in the refined regions of the mesh while preserving an explicit

time scheme in the complementary part, resulting in an hybrid explicit–implicit
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(or locally implicit) time integration strategy. The set of local system of ordinary

differential equations for each �i (3) can be formally transformed in a global system.

To this end, we suppose that all electric (resp. magnetic) unknowns are gathered in

a column vector E (resp. H) of size dg D NTh
d where NTh

stands for the number

of elements in Th. Then system (3) can be rewritten as (we set S D K � A � B):

M
" dE

dt
D KH�AH�BH D SH; M

� dH

dt
D �KECAE�BE D � t

SE: (4)

where we have the following definitions and properties:

� M
";M� and K are dg � dg block diagonal matrices with diagonal blocks equal

toM "
i ;M

�
i and Ki respectively.

� A is also a dg � dg block sparse matrix, whose non-zero blocks are equal to Sik

when aik is an internal interface of the mesh.

� B is a dg � dg block diagonal matrix, whose non-zero blocks are associated to

the numerical treatment of the boundary conditions (2).

4.1 Explicit and Implicit Time Schemes

The system (4) can be time integrated using a second-order Leap–Frog scheme as:

M
"

�
E

nC1 � E
n

�t

�

D SH
nC 1

2 ; M
�

 
H

nC 3
2 � H

nC 1
2

�t

!

D � t
SE

nC1: (5)

The resulting fully explicit DGTD-Pp method is analyzed in [5] where it is shown

that the method is non-dissipative, conserves a discrete form of the electromagnetic

energy and is stable under the CFL-like condition:

�t �
2

d2

; with d2 Dk .M��/
1
2

t
S .M�"/

1
2 k; (6)

where k:k denote the canonical norm of a matrix .8X; kAXk � kAkkXk/, and

the matrix .M�� /
1
2 is the inverse square root of M

� . Alternatively, (4) can be time

integrated using a second-order Crank–Nicolson scheme as:

8
ˆ̂
<

ˆ̂
:

M"

�
E

nC1 � E
n

�t

�

D S

�
H

n C H
nC1

2

�

;

M
�

�
H

nC1 � H
n

�t

�

D � t
S

�
E

n C E
nC1

2

�

:

(7)

Such a fully implicit DGTD-Pp method is considered in [2] for the solution of the

2D Maxwell equations. In particular, the resulting method is unconditionally stable.
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4.2 Hybrid Explicit–Implicit Time Scheme

We consider here a method of this kind that was recently proposed by Piperno in

[7]. The set of elements �i of the mesh is now assumed to be partitioned into two

subsets: one made of the smallest elements and the other one gathering the remain-

ing elements. In the following, these two subsets are respectively referred asSi and

Se . In the proposed hybrid time scheme, the small elements are handled using a

Crank–Nicolson scheme while all other elements are time advanced using a variant

of the classical Leap–Frog scheme known as the Verlet method. Then, starting from

the values of the fields at time tn D n�t , the proposed hybrid explicit–implicit time

integration scheme consists in three sub-steps:

1. The components of H and E associated to the set Se are time advanced from tn

to tnC 1
2 with time step �t=2 using a pseudo-forward Euler scheme,

2. The components of H and E associated to the set Si are time advanced from tn

to tnC1 with time step �t using the Crank-Nicolson scheme,

3. The components of H and E1 associated to the set Se are time advanced from

tnC 1
2 to tnC1 with time step �t=2 using the reversed pseudo-forward Euler

scheme.

In order to further describe this scheme, the problem unknowns are reordered such

that sub-vectors with an e subscript (respectively, an i subscript) are associated to

the elements of the set Se (respectively, the set Si ). Thus, the global system of

ordinary differential equations (4) can be split into two systems:

8
<̂

:̂

M
"
e

dEe

dt
D SeHe � AeiHi ;

M
�
e

dHe

dt
D � t

SeEe C AeiEi ;

8
ˆ̂
<

ˆ̂
:

M
"
i

dEi

dt
D Si Hi � AieHe;

M
�
i

dHi

dt
D � t

SiEi C AieEe :

(8)

Then, the proposed hybrid explicit–implicit algorithm consists in the following

steps:

Step 1 W

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

M
�
e

0

@H
nC 1

2
e � H

n
e

�t=2

1

A D � t
SeE

n
e C AeiE

n
i ;

M
"
e

0

@E
nC 1

2
e � E

n
e

�t=2

1

A D SeH
nC 1

2
e � AeiH

n
i :

(9)

Step 2 W

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

M
"
i

 
E

nC1
i � E

n
i

�t

!

D Si

 
H

nC1
i C H

n
i

2

!

� AieH
nC 1

2
e ;

M
�
i

 
H

nC1
i � H

n
i

�t

!

D � t
Si

 
E

nC1
i C E

n
i

2

!

C AieE
nC 1

2
e :

(10)
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Step 3 W

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

M
"
e

0

@
E

nC1
e � E

nC 1
2

e

�t=2

1

A D SeH
nC 1

2
e � AeiH

nC1
i ;

M
�
e

0

@H
nC1
e � H

nC 1
2

e

�t=2

1

A D � t
SeE

nC1
e C AeiE

nC1
i :

(11)

In [7], the author shows that the hybrid explicit–implicit scheme (9)-(11) for time

integration of the semi-discrete system (4) associated to the DGTD-Pp method

exactly conserves the following quadratic form of the numerical unknowns E
n
e , E

n
i ,

H
n
e and H

n
i :

E
n D E

n
e C E

n
i C E

n
h with

8
ˆ̂
<̂

ˆ̂
:̂

E n
e D t

E
n
e M

"
eE

n
e C t

H
nC 1

2
e M

�
e H

n� 1
2

e ;

E
n
i D t

E
n
i M

"
i E

n
i C t

H
n
i M

�
i H

n
i ;

E n
h

D �
�t2

4
t
H

n
i

t
Aei .M

"
e/

�1
AeiH

n
i ;

(12)

as far as �a D ;. However, the condition under which E n is a positive definite

quadratic form and thus represents a discrete form of the electromagnetic energy is

not given. In the following we state such a condition on the global time step �t .

Lemma 1. The discrete electromagnetic energy E n given by (12) is a positive

definite quadratic form of the numerical unknowns E
n
e , E

n
i , H

n
e and H

n
i if:

�t �
2

˛e C max.ˇei ; �ei /
with

8
ˆ̂
<

ˆ̂
:

˛e D k .M"
e/

� 1
2 Se.M

�
e /

� 1
2 k;

ˇei D k .M"
e/

� 1
2 Aei .M

�
i /

� 1
2 k;

�ei D k .M
�
e /

� 1
2 Aei .M

"
i /

� 1
2 k;

(13)

where k : k denotes a matrix norm and the matrix .M�
e=i

/�
1
2 is the inverse of the

square root of the matrix M
�
e=i

(� stands for " or �).

The proof can be found in [4]. In summary, (13) states that the stability of the hybrid

explicit–implicit DGTD-Pp method is deduced from a criterion which is essentially

the one obtained for the fully explicit method here restricted to the subset of explicit

elements Se, augmented by two terms involving elements of the implicit subset Si

associated to hybrid internal interfaces (i.e., interfaces aik such that �i 2 Se and

�k 2 Si ).

5 Numerical Results

In this section we apply the proposed hybrid explicit–implicit DGTD-Pp method to

the simulation of a 3D problem involving the scattering of a plane wave (F D 1GHz)

by a perfectly conducting sphere with wall thickness e D 5 10�3 m and radius
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X
Y

Z

XY

Z

Fig. 1 Scattering of plane wave by a spherical mesh cavity with a hole. Geometry setting and

unstructured mesh (left), contour lines of Ex for the hybrid explicit–implicit DGTD-P2 method

(right)

R D 0:2m with a hole of radius r D 2:5 10�2 m at one of its pole (see Fig. 1

left for a view of the geometry and the unstructured mesh in a selected plane). The

computational domain is artificially bounded by a cubic surface on which the Silver–

Müller boundary condition is applied. The underlying tetrahedral mesh consists of

56,482 vertices and 301,116 tetrahedra. The contour lines of Ex for a physical sim-

ulation time corresponding to 10 periods of the incident wave are shown on Fig. 1

right. The definition of the subsets Si and Se relies on the geometric criterion

cg.�i / D 4minj 2Vi

Vi Vj

Pi Pj
. In the present case, the threshold value 2:5 10�3 m has

been selected resulting in jSej D 300;526 and jSi j D 590 (i.e., only 0.2% of

the mesh elements are treated implicitly). The time steps used in the simulations

are the following: 0:34 (2:8) picosec for the explicit (hybrid) DGTD-P1 method

and 0:17 (1:4) picosec for the explicit (hybrid) DGTD-P2 method. Numerical sim-

ulations have been conducted on a cluster of Intel Xeon 2.33GHz based nodes

interconnected by a high performance Myrinet network. Each node consists of a

dual processor quad core board sharing 16GB of RAMmemory. The parallelization

of the hybrid explicit–implicit DGTD-Pp method relies on a SPMD (Single Pro-

gramMultiple Data) strategy which combines a partitioning of the tetrahedral mesh

with a message passing programming using the MPI interface. Performance results

for the simulations based on the DGTD-P1 and DGTD-P2 methods are summarized

in Table 1 where “RAM (LU)” is the maximum per-processor memory overhead

for computing and storing the sparse L and U factors (after an AMD reordering for

the minimization of the bandwidth), while “Time (LU)” gives the maximum factors

construction time. The direct solver used is MUMPS (see [1]) The results of Table 1

show that the memory overhead associated to the construction and the storage of

the L and U factors of the implicit matrix is acceptable while the gain in computing

time is roughly equal to 4.4 for both the P1 and P2 interpolation methods.
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Table 1 Scattering of plane wave by a spherical mesh cavity. Performance results (Ns D 8

processing units)

Method RAM (LU) Time (LU) Total time

Explicit DGTD-P1 – – 44mn

Hybrid explicit–implicit DGTD-P1 2MB <1 s 10mn

Explicit DGTD-P2 – – 4 h 24mn

Hybrid explicit–implicit DGTD-P2 8MB <1 s 56mn

6 Conclusions

We have presented some preliminary results of the development of a hybrid explicit–

implicit DGTD method for overcoming the grid-induced stiffness in time domain

electromagnetics. The proposed method allows to reduce notably the overall com-

puting time as compared to a fully explicit method, when a rather small number of

the mesh elements are treated implicitly (typically a few percent) which is often the

case in practical situations involving locally refined simplicial meshes. Future works

will follow several directions: (a) improvement of the temporal accuracy by study-

ing the combination of a high order Leap-Frog scheme with a high order implicit

time scheme, (b) design of an auto-adaptive solution strategy for the selection of

the reference time step minimizing dispersion error and, (c) treatment of load bal-

ancing issues raised by the separation of mesh elements into two subsets in order to

obtained a scalable hybrid explicit–implicit DGTD method.
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