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a b s t r a c t

In this paper, we discuss the formulation, stability and validation of a high-order non-

dissipative discontinuous Galerkin (DG) method for solving Maxwell’s equations on non-

conforming simplexmeshes. The proposedmethod combines a centered approximation for

the numerical fluxes at inter element boundaries, with either a second-order or a fourth-

order leap-frog time integration scheme. Moreover, the interpolation degree is defined at

the element level and the mesh is refined locally in a non-conforming way resulting in

arbitrary-level hanging nodes. The method is proved to be stable and conserves a discrete

counterpart of the electromagnetic energy for metallic cavities. Numerical experiments

with high-order elements show the potential of the method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Time-domain solutions ofMaxwell’s equations find applications in the applied sciences and engineering problems such as

the design and optimization of antennas and radars, the design of emerging technologies (high speed electronics, integrated

optics, etc.), the study of human exposure to electromagnetic waves [1], to name a few. These problems require high fidelity

approximate solutions with a rigorous control of the numerical errors. Even for linear problems such conditions force one to

look beyond standard computational techniques and seek new numerical frameworks enabling the accurate, efficient, and

robust modeling of wave phenomena over long simulation times in settings of realistic geometrical complexity.

The finite difference time-domain (FDTD) method, first introduced by Yee in 1966 [2] and later developed by Taflove

and others [3], has been used for a broad range of applications in computational electromagnetics. In spite of its flexibility

and second-order accuracy in a homogeneous medium, the Yee scheme suffers from serious accuracy degradation when

used to model complex geometries. In recent years, a number of efforts aimed at addressing the shortcomings of the

classical FDTD scheme, e.g. embedding schemes to overcome staircasing [4], high-order finite difference schemes [2,6], non-

conforming orthogonal FDTD methods [7]. Most of these methods, however, have not really penetrated into main stream

user community, partly due to their complicated nature and partly because thesemethods themselves often introduce other

complications.

The discontinuous Galerkin methods enjoy an impressive favor nowadays and are now used in various applications.

Being higher-order versions of traditional finite volumemethods [8], discontinuous Galerkin time-domain (DGTD)methods

based on discontinuous finite element spaces, easily handle elements of various types and shapes, irregular non-conforming

meshes [9], and even locally varying polynomial degree. They hence offer great flexibility in the mesh design, but also lead

to (block-) diagonal massmatrices and therefore yield fully explicit, inherently parallel methodswhen coupledwith explicit

time stepping [10]. Moreover, continuity is weakly enforced across mesh interfaces by adding suitable bilinear forms (the

∗ Corresponding author.

E-mail addresses: Hassan.Fahs@gmail.com, Hassan.Fahs@ifp.fr (H. Fahs).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.cam.2009.05.015



Author's personal copy

H. Fahs, S. Lanteri / Journal of Computational and Applied Mathematics 234 (2010) 1088–1096 1089

so-called numerical fluxes) to the standard variational formulations. Whereas high-order discontinuous Galerkin time-

domain methods have been developed on conforming hexahedral [11] and tetrahedral [12] meshes, the design of non-

conforming discontinuous Galerkin time-domain methods is still in its infancy. In practice, the non-conformity can result

from a local refinement of the mesh (i.e. h-refinement), of the interpolation degree (i.e. p-enrichment) or of both of them

(i.e. hp-refinement).

In this paper, we present a high-order DGTD method on non-conforming simplicial meshes. It is an extension of the DG

formulation recently studied in [9]. One of the most important properties which should be aimed at is the conservation of a

discrete counterpart of the electromagnetic energy on a general non-conforming simplexmeshwith arbitrary-level hanging

nodes, including hp-type refinement. This cannot be obtained with DGmethods based on upwind fluxes [13]. The rest of the

paper is organized as follows. In Section 2, we introduce the high-order non-conforming DGTDmethod for solving the first-

order Maxwell equations, based on totally centered fluxes and a high-order leap-frog time integration scheme. We prove

the stability of the resulting fully discretized scheme and its energy conservation properties in Section 3. The stability result

is more general than the ones obtained in [9,12]. Numerical results are presented in Section 4. Finally, Section 5 concludes

this paper and states future research directions.

2. Discontinuous Galerkin time-domain method

We consider the Maxwell equations in three space dimensions for heterogeneous anisotropic linear media with no

source. The electric permittivity tensor ¯̄�(x) and the magnetic permeability tensor ¯̄µ(x) are varying in space, time-invariant

and both symmetric positive definite. The electric field �E = t(Ex, Ey, Ez) and the magnetic field �H = t(Hx,Hy,Hz) verify:

¯̄�∂t
�E = curl �H, ¯̄µ∂t

�H = −curl �E, (1)

where the symbol ∂t denotes a time derivative. These equations are set and solved on a bounded polyhedral domain Ω of

R3. For the sake of simplicity, a metallic boundary condition is set everywhere on the domain boundary ∂Ω , i.e. �n × �E = 0

(where �n denotes the unitary outwards normal).

We consider a partition Ωh of Ω into a set of tetrahedra τi of size hi = diam(τi) with boundaries ∂τi such that h =
maxτi∈Ωh

hi. To each τi ∈ Ωh we assign an integer pi ≥ 0 (the local interpolation order) and we collect the pi in the vector

p = {pi : τi ∈ Ωh}. Of course, if pi is uniform in all element τi of the mesh, we have p = pi. Within this construction we

admit meshes with possibly hanging nodes i.e. by allowing non-conforming (or irregular) meshes where element vertices

can lie in the interior of faces of other elements. Each tetrahedron τi is assumed to be the image, under a smooth bijective

(diffeomorphic) mapping, of a fixed reference tetrahedron τ̂ = {x̂, ŷ, ẑ|x̂, ŷ, ẑ ≥ 0; x̂ + ŷ + ẑ ≤ 1}. For each τi, Vi denotes

its volume, and ¯̄� i and ¯̄µi are respectively the local electric permittivity and magnetic permeability tensors of the medium,

which could be varying inside the element τi. For two distinct tetrahedra τi and τk in Ωh, the intersection τi ∩ τk is a triangle
aik which we will call interface, with unitary normal vector �nik, oriented from τi towards τk. For the boundary interfaces, the
index k corresponds to a fictitious element outside the domain. Finally, we denote by Vi the set of indices of the elements

which are neighbors of τi (having an interface in common). We also define the perimeter Pi of τi by Pi =
�

k∈Vi
sik. We have

the following geometrical property for all elements:
�

k∈Vi
sik�nik = 0.

In the following, for a given partition Ωh and vector p, we seek approximate solutions to (1) in the finite dimensional

subspace Vp(Ωh) := {�v ∈ L2(Ω)3 : �v|τi ∈ Ppi(τi), ∀τi ∈ Ωh}, where Ppi(τi) denotes the space of nodal polynomials of degree

at most pi inside the element τi. Note that the polynomial degree, pi, may vary from element to element in the mesh. By

non-conforming interface we mean an interface aik for which at least one of its vertices is a hanging node or/and such that

pi|aik
�= pk|aik

.

According to the discontinuous Galerkin approach, the electric and magnetic fields inside each finite element are linear

combinations (�Ei, �Hi) of linearly independent basis vector fields �ϕij, 1 ≤ j ≤ di, where di denotes the local number of degrees

of freedom (DOF) inside τi. We denote byPi = Span(�ϕij, 1 ≤ j ≤ di). The approximate fields (�Eh, �Hh), defined by (∀i, �Eh|τi =
�Ei, �Hh|τi = �Hi) are allowed to be completely discontinuous across element boundaries. For such a discontinuous field �Uh, we

define its average {�Uh}ik through any internal interface aik, as {�Uh}ik = (�Ui|aik + �Uk|aik)/2. Note that for any internal interface

aik, {�Uh}ki = {�Uh}ik. Because of this discontinuity, a global variational formulation cannot be obtained. However, dot-

multiplying (1) by any given vector function �ϕ ∈ Pi, integrating over each single element τi and integrating by parts, yield:






�

τi

�ϕ · ¯̄� i∂t
�E =

�

τi

curl �ϕ · �H −

�

∂τi

�ϕ · (�H × �n),

�

τi

�ϕ · ¯̄µi∂t
�H = −

�

τi

curl �ϕ · �E +

�

∂τi

�ϕ · (�E × �n).

(2)

In Eq. (2), we now replace the exact fields �E and �H by the approximate fields �Eh and �Hh in order to evaluate volume inte-

grals. For integrals over ∂τi, a specific treatment must be introduced since the approximate fields are discontinuous through

element faces. We choose to use completely centered fluxes, i.e. ∀i, ∀k ∈ Vi, �E|aik � {�Eh}ik, �H|aik � {�Hh}ik. The metallic
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boundary condition on a boundary interface aik (k in the element index of the fictitious neighboring element) is dealt with

weakly, in the sense that traces of fictitious fields �Ek and �Hk are used for the computation of numerical fluxes for the bound-

ary element τi. In the present case, where all boundaries are metallic, we simply take �Ek|aik = −�Ei|aik and �Hk|aik = �Hi|aik .

Replacing surface integrals using centered fluxes in (2) and re-integrating by parts yields:






�

τi

�ϕ · ¯̄� i∂t
�Ei =

1

2

�

τi

(curl �ϕ · �Hi + curl �Hi · �ϕ) −
1

2

�

k∈Vi

�

aik

�ϕ · (�Hk × �nik),

�

τi

�ϕ · ¯̄µi∂t
�Hi = −

1

2

�

τi

(curl �ϕ · �Ei + curl �Ei · �ϕ) +
1

2

�

k∈Vi

�

aik

�ϕ · (�Ek × �nik).
(3)

We can rewrite this formulation in terms of scalar unknowns. Inside each element, the fields are recomposed according to
�Ei =

�
1≤j≤di

Eij�ϕij, �Hi =
�

1≤j≤di
Hij�ϕij. Let us denote by Ei and Hi respectively the column vectors (Eil)1≤l≤di and (Hil)1≤l≤di .

Eq. (3) can be rewritten as:






M�
i ∂tEi = KiHi −

�

k∈Vi

SikHk,

M
µ

i ∂tHi = −KiEi +
�

k∈Vi

SikEk,
(4)

where the symmetric positive definite mass matricesMσ
i (σ stands for � or µ), and the symmetric stiffness matrix Ki (all of

size di) are given by : (Mσ
i )jl =

�
τi

t �ϕij · ¯̄σ i�ϕil and (Ki)jl = 1

2

�
τi

t �ϕij · curl �ϕil +
t �ϕil · curl �ϕij. For any interface aik, the di × dk

rectangular matrix Sik is given by:

(Sik)jl =
1

2

�

aik

t �ϕij · (�ϕkl × �nik), 1 ≤ j ≤ di, 1 ≤ l ≤ dk. (5)

Concerning the time discretization, we propose to use a leap-frog (LFN ,N = 2, 4) scheme. This kind of time scheme has both

advantages to be explicit and to be non-dissipative. In what follows, superscripts refer to time-stations and �t is the fixed

time step. The unknowns related to the electric field are approximated at integer time-stations tn = n�t and are denoted

by En
i . The unknowns related to themagnetic field are approximated at half-integer time-stations tn+1/2 = (n+1/2)�t and

are denoted by H
n+1/2

i . The LFN(N = 2, 4) integrator is constructed as follows [14,15]:






T1 = �t(M�
i )

−1curl �H
n+ 1

2

i , T�
1 = −�t(M

µ

i )−1curl �E
n+1

i ,

T2 = −�t(M
µ

i )−1curl T1, T�
2 = �t(M�

i )
−1curl T�

1,

T3 = �t(M�
i )

−1curl T2, T�
3 = −�t(M

µ

i )−1curl T�
2.

LF2 :

�
En+1
i = En

i + T1,

H
n+ 3

2
i = H

n+ 1
2

i + T�
1.

LF4 :

�
En+1
i = En

i + T1 + T3/24,

H
n+ 3

2
i = H

n+ 1
2

i + T�
1 + T�

3/24.

(6)

For the treatment of the boundary condition on an interface aik, we use:

En
k|aik

= −En
i|aik

and H
n+ 1

2

k|aik
= H

n+ 1
2

i|aik
. (7)

3. Stability of the discontinuous Galerkin method

We aim at giving and proving a sufficient condition for the L2-stability of the proposed discontinuous Galerkin method

with only metallic boundary conditions. We use the same kind of energy approach as in [12], where a quadratic form plays

the role of a Lyapunov function of the whole set of numerical unknowns. To this end, we suppose that all electric (resp.

magnetic) unknowns are gathered in a column vector E (resp. H) of size d =
�

i di, then the space discretized system (4)

can be rewritten as:
�

M�∂tE = KH − AH − BH,
Mµ∂tH = −KE + AE − BE,

(8)

where we have the following definitions and properties:

• M�, Mµ and K are d× d block diagonal matrices with diagonal blocks equal toM�
i ,M

µ

i and Ki respectively. Therefore M�

and Mµ are symmetric positive definite matrices, and K is a symmetric matrix.
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• A is also a d× d block sparse matrix, whose non-zero blocks are equal to Sik when aik is an internal interface of the mesh.

Since �nki = −�nik, it can be checked from (5) that (Sik)jl = (Ski)lj and then Ski = t Sik; thus A is a symmetric matrix.

• B is a d× d block diagonal matrix, whose non-zero blocks are equal to Sik when aik is a metallic boundary interface of the

mesh. In that case, (Sik)jl = −(Sik)lj, and Sik = − t Sik; thus B is a skew-symmetric matrix.

The discontinuous Galerkin DGTD-Ppi method using centered fluxes combined with Nth-order leap-frog (LFN) time

scheme and arbitrary local accuracy and basis functions can be written, in function of the matrix S = K − A − B, in the

general form:






M� En+1 − En

�t
= SNHn+ 1

2 ,

Mµ Hn+ 3
2 − Hn+ 1

2

�t
= − tSNEn+1,

(9)

where the matrix SN (N being the order of the leap-frog scheme) verifies:

SN =






S if N = 2,

S

�

I −
�t2

24
M−µ tSM−�S

�

if N = 4.
(10)

We now define the following discrete version of the electromagnetic energy.

Definition 1. We consider the following electromagnetic energies inside each tetrahedron τi and in the whole domain Ω:

• the local energy : ∀i, En
i =

1

2

�
tEn

i M
�
i E

n
i + tH

n− 1
2

i M
µ

i H
n+ 1

2
i

�

, (11)

• the global energy : En =
1

2

�
tEnM�En + tHn− 1

2 MµHn+ 1
2

�
. (12)

In the following, we shall prove that the global energy (12) is conserved through a time step and that it is a positive definite

quadratic form of all unknowns under a CFL-like condition on the time step �t .

Lemma 1. Using the DGTD-Ppi method (9)–(10) for solving (1) with metallic boundaries only, the global discrete energy (12) is

exactly conserved, i.e. En+1 − En = 0, ∀n.

Proof. We denote by En+ 1
2 = En+1+En

2
. We have :

En+1 − En = tEn+ 1
2 M�

�
En+1 − En

�
+

1

2

tHn+ 1
2 Mµ

�
Hn+ 3

2 − Hn− 1
2

�

= �t tEn+ 1
2 SNHn+ 1

2 −
1

2
�t tHn+ 1

2

�
tSNEn+1 + tSNEn

�

= �t tHn+ 1
2

�
tSN − tSN

�
En+ 1

2 = 0.

This concludes the proof. �

Lemma 2. Using theDGTD-Ppi method (9)–(10), the global discrete electromagnetic energyEn (12) is a positive definite quadratic

form of all unknowns if:

�t ≤
2

dN

, with dN = �M
−µ
2

tSNM
−�
2 �, (13)

where �.� denotes a matrix norm, and the matrix M
−σ
2 is the inverse square root of Mσ . Also, for a given mesh, the stability limit

of the LF 4 scheme is roughly 2.85 times larger than that of the LF 2 scheme.

Proof. The mass matrices M� and Mµ are symmetric positive definite and we can construct in a simple way their square

root (also symmetric positive definite) denoted by M
�
2 and M

µ
2 respectively.

Using the scheme (9) to develop Hn+ 1
2 in function of En and Hn− 1

2 , yields:

En =
1

2

tEnM�En +
1

2

tHn− 1
2 MµHn+ 1

2

=
1

2

tEnM�En +
1

2

tHn− 1
2 MµHn− 1

2 −
�t

2

tHn− 1
2

tSNEn
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≥
1

2
�M

�
2 En�2 +

1

2
�M

µ
2 Hn− 1

2 �2 −
�t

2
| tHn− 1

2 M
µ
2 M

−µ
2

tSNM
−�
2 M

�
2 En|

≥
1

2
�M

�
2 En�2 +

1

2
�M

µ
2 Hn− 1

2 �2 −
dN�t

2
�M

µ
2 Hn− 1

2 ��M
�
2 En�.

At this point, we choose to use an upper bound for the term �M
µ
2 Hn− 1

2 ��M
�
2 En� which might lead to sub-optimal lower

bounds for the energy (and then to a slightly too severe stability limit for the scheme). Anyway, this stability limit is only

sufficient, and not really close to necessary. We use the inequality:

�M
µ
2 Hn− 1

2 ��M
�
2 En� ≤

1

2
(�M

µ
2 Hn− 1

2 �2 + �M
�
2 En�2).

We then sum up the lower bounds for the En to obtain:

En ≥
1

2

�

1 −
dN�t

2

�

�M
�
2 En�2 +

1

2

�

1 −
dN�t

2

�

�M
µ
2 Hn− 1

2 �2.

Then, under the condition proposed in Lemma 2, the electromagnetic energy En is a positive definite quadratic form of all

unknowns.

Moreover, for a given mesh, using the definition (10) of SN , the LF4 scheme is stable if:

�t�M
−µ
2

tS4M
−�
2 � ≤ 2,

⇒ �t

�
�
�
�M

−µ
2

t

�

S2 −
�t2

24
S2M

−µ tS2M
−�S2

�

M
−�
2

�
�
�
� ≤ 2,

⇒

�
�
�
��td2 −

�t3

24
d32

�
�
�
� ≤ 2.

This inequality is verified if and only if d2�t ≤ 2(
3
√
2 + 3

√
4) � 2(2.847). This concludes the proof. �

Now, our objective is to give an explicit CFL condition on �t under which the local energy (11) is a positive definite

quadratic form of the numerical unknowns En
i and H

n− 1
2

i . We first need some classical definitions.

Definition 2. We assume that the tensors ¯̄� i and ¯̄µi are piecewise constant, i.e. ¯̄� i = �i and ¯̄µi = µi. We denote by

ci = 1/
√

�iµi the propagation speed in the finite element τi. We also assume that there exist dimensionless constants

αi and βik(k ∈ Vi) such that:

∀�X ∈ Pi,






�curl �X�τi ≤
αiPi

Vi

��X�τi ,

��X�2
aik

≤
βiksik

Vi

��X�2
τi
,

(14)

where ��X�τi and ��X�aik denote the L2-norm of the vector field �X over τi and the interface aik respectively.

Lemma 3. Using the LF 2 scheme (4)–(6)–(7), under assumptions of Definition 2, the local discrete energy En
i (11) is a positive

definite quadratic form of all unknowns (En
i ,H

n− 1
2

i ) and the scheme is stable if the time step �t is such that:

∀i, ∀k ∈ Vi, ci�t[2αi + βik] <
4Vi

Pi
, (15)

(with the convention that, in the above formula, k should be replaced by i for a metallic boundary interface aik).

Proof. Using the scheme (3) to replace the occurrences of H
n+ 1

2
i in the definition of Ei, and using the boundary fluxes given

in (7), we get:

En
i =

�i

2
�En

i �
2
τi

+
µi

2
�H

n− 1
2

i �2
τi

−
�t

4
Xn

i , with

Xn
i =

�

τi

�

curl �H
n− 1

2

i · �E
n

i + curl �E
n

i · �H
n− 1

2

i

�

−
�

k∈Vi

�

aik

�
�H
n− 1

2

i × �E
n

k

�

· �nik.



Author's personal copy

H. Fahs, S. Lanteri / Journal of Computational and Applied Mathematics 234 (2010) 1088–1096 1093

 0

0.2

0.4

0.6

0.8

 1

 0.2  0.4  0.6  0.8  1 0

Fig. 1. Non-conforming locally refined triangular mesh.

In the remainder of this proof, we omit the superscripts n and n−1/2 respectively in the electric andmagnetic variables.

We have the following identities:

|Xn
i | ≤ �curl �Hi�τi�

�Ei�τi + �curl �Ei�τi�
�Hi�τi +

1

2

�

k∈Vi

��
µi

�i
��Hi�

2
aik

+

�
�i

µi

��Ek�
2
aik

�

≤
2αiPi

Vi

��Hi�τi�
�Ei�τi +

1

2

�

k∈Vi

��
µi

�i

βiksik

Vi

��Hi�
2
τi

+

�
�i

µi

βkisik

Vk

��Ek�
2
τk

�

.

Noticing that ��Hi�τi�
�Ei�τi ≤ ci

2
(µi��Hi�

2
τi

+ �i��Ei�
2
τi
), gathering all lower bounds for terms in the expression of En

i and using

Pi =
�

k∈Vi
sik leads to:

En
i ≥

�

k∈Vi

sik

�
1

2Pi
−

αici�t

4Vi

� �
�i��Ei�

2
τi

+ µi��Hi�
2
τi

�
−

�t

8

�

k∈Vi

sik

��
µi

�i

βik

Vi

��Hi�
2
τi

+

�
�i

µi

βki

Vk

��Ek�
2
τk

�

.

Then, summing up these inequalities in order to obtain a lower bound for
�

i Ei leads to an expression that we reorganize

as sum over interfaces. We find that
�

i Ei ≥
�

aik
sikWik with:

Wik = �i��Ei�
2
τi

�
1

2Pi
−

αici�t

4Vi

−
βikci�t

8Vi

�

+ µi��Hi�
2
τi

�
1

2Pi
−

αici�t

4Vi

−
βikci�t

8Vi

�

+�k��Ek�
2
τk

�
1

2Pk
−

αkck�t

4Vk

−
βkick�t

8Vk

�

+ µk��Hk�
2
τk

�
1

2Pk
−

αkck�t

4Vk

−
βkick�t

8Vk

�

.

Under the conditions proposed in Lemma 3, Wik is a positive definite quadratic form of all unknowns and so is the local

energy. This concludes the proof. �

Note that, the existence of the constants αi and βik(k ∈ Vi) is always ensured. The values of αi only depend on the

local polynomial order pi while the values of βik depend on pi and on the number of hanging nodes on the interface aik. For

instance, for orthogonal polynomials on a d-simplex βik = (pi +1)(pi +d)/d (see [5]), and for arbitrary basis functions these
values are given by:

�
α2
i P

2
i

V 2
i

;
βiksik

Vi

�

=
�
�M−1/2S1M

−1/2�; �M−1/2S2M
−1/2�

�
,

whereM is the mass matrix without material parameter, S2 = 2Sik, and S1 =
�
τi
curl �ϕij · curl �ϕil, 1 ≤ j, l ≤ di.

4. Numerical experiments

We consider here the Maxwell equations in two space dimensions and in the TM-polarization; i.e. we solve for

(Hx,Hy, Ez). We validate the theory by considering the propagation of an eigenmode which is a standing wave of frequency
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Fig. 2. Time evolution of the L2 error. DGTD-Pp (top) and DGTD-P(p1,p2) (bottom) methods.

f = 212 MHz and wavelength λ = 1.4 m in a unitary metallic cavity with � = µ = 1 in normalized units. Owing to the

existence of an exact analytical solution, this problem allows us to appreciate the numerical results at any point and time in

the cavity. Numerical simulations make use of triangular meshes of the square [0, 1] × [0, 1] and a non-conforming mesh

is obtained by locally refining (two refinement levels) the square zone [0.25, 0.75] × [0.25, 0.75] of a coarse conforming

mesh as shown in Fig. 1. The resulting non-conformingmesh consists of 782 triangles and 442 nodes (36 of them are hanging

nodes). For this non-conformingmesh,we assign to coarse (i.e. non-refined) elements a high polynomial degree p1 and to the

refined region a lowpolynomial degree p2. The resulting scheme is referred to as DGTD-P(p1, p2). If p1 = p2 = p, the scheme is

simply called DGTD-Pp. Note that, for a conforming interface aik, thematrix Sik defined in (5) can be evaluated in a direct way

once and for all. However, for a non-conforming interface, we cannot calculate this matrix with an exact formula because it

depends on the number of hanging nodes on the interface aik. For that, and only for non-conforming interfaces, we calculate

the matrix Sik by using a Gaussian quadrature formula. All simulations are carried out for time t = 150 which corresponds

to 106 periods. In Table 1, we summarize the CFL values of the LF2 DGTD-Pp method. If p1 �= p2, the DGTD-P(p1,p2) method

has the same stability limit as the DGTD-Pmin(p1,p2) method, as long as themesh is actually refined.We plot on Fig. 2 the time

evolution of the overall L2 error of the DGTD-Pp and DGTD-P(p1,p2) methods using the LF2 and LF4 schemes. Table 2 gives the

L2 error, the number of degrees of freedom and the CPU time to reach time t = 150. It can be observed from Fig. 2 that the

gain in the L2 error is noticeablewhen the accuracy in space and time is increased.Moreover, it is clear from (6) and Lemma 2

that, for the same non-conformingmesh, each time step of LF4 requires 2 timesmorememory than the LF2 time step, but its

stability limit is almost 2.85 times less restrictive. Then, LF4 requires almost 1.5 times less CPU time and is roughly 15 times

more efficient than LF2. Furthermore, for a given accuracy, the LF4 DGTD-P(p1,p2) method requires less CPU time than the LF4
DGTD-Pp method. Fig. 3 illustrates the numerical convergence of the DGTD-Pp and DGTD-P(p1,p2) methods. Corresponding
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Fig. 3. Numerical convergence of the DGTD-Pp and DGTD-P(p1,p2) methods.

Table 1

The CFL values of the LF2 DGTD methods.

DGTD-Pp method, p = 1 2 3 4 5

CFL (LF2) 0.3 0.2 0.1 0.08 0.06

DGTD-P(p1,p2) method, (p1, p2) = (3, 2) (4, 2) (4, 3) (5, 3) (5, 4)
CFL (LF2) 0.2 0.2 0.1 0.1 0.08

asymptotic convergence orders are summarized in Table 3. As it could be expected from the use of the Nth accurate time

integration scheme, the asymptotic convergence order is bounded by N independently of the interpolation degree.

5. Concluding remarks

In this paper, we have studied a high-order discontinuous Galerkin method for the discretization of the time-domain

Maxwell equations on non-conforming simplicial meshes. We proved that the method conserves a discrete equivalent of

the electromagnetic energy and it is stable under some CFL-type stability condition. Numerical simulations were performed

by considering an eigenmode problem in two space dimensions. We have shown that, for a given non-conforming mesh,

the DGTD methods coupled to the LF4 scheme are at least 15 times more accurate and require roughly 1.5 times less CPU

time than the LF2 DGTD methods. Concerning future works, our objective is to design a truly hp-adaptive method through

the construction of an appropriate error estimator.
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Table 2

# DOF, L2 errors and CPU time in minutes using the LF2 and LF4 DGTD methods.

DGTD-Pp method LF2 LF4

p # DOF Error CPU (min) Error CPU (min)

2 4692 1.8E−03 11 5.5E−04 8

3 7820 3.1E−04 39 2.4E−05 28

4 11730 1.9E−04 98 1.5E−05 70

5 16422 1.5E−04 220 1.3E−05 155

DGTD-P(p1,p2) method LF2 LF4

(p1, p2) # DOF Error CPU (min) Error CPU (min)

(3, 2) 6668 1.3E−03 17 2.3E−05 12

(4, 2) 9138 1.3E−03 27 1.5E−05 19

(4, 3) 10290 3.2E−04 61 1.5E−05 44

(5, 4) 14694 2.0E−04 134 1.4E−05 95

Table 3

Asymptotic convergence orders of the LF2 and LF4 DGTD methods.

DGTD-Pp method, p = 2 3 4

LF2 scheme 2.28 2.33 2.10

LF4 scheme 2.32 2.97 3.99

DGTD-P(p1,p2) method, (p1, p2) = (3, 2) (4, 2) (4, 3) (5, 3) (5, 4)
LF2 scheme 2.13 2.00 2.05 2.02 2.03

LF4 scheme 3.15 3.02 3.85 3.71 3.71
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