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We report on results concerning a discontinuous Galerkin time domain (DGTD) method for the solution of Maxwell equations. This
DGTD method is formulated on unstructured simplicial meshes (triangles in 2-D and tetrahedra in 3-D). Within each mesh element, the
electromagnetic field components are approximated by an arbitrarily high order nodal polynomial while, in the original formulation
of the method, time integration is achieved by a second order Leap-Frog scheme. Here, we discuss about several recent developments
aiming at improving the accuracy and the computational efficiency of this DGTD method in view of the simulation of problems involving
general domains and heterogeneous media.

Index Terms—Discontinuous Galerkin method, high order method, hybrid explicit-implicit time stepping, nonconforming discretiza-
tion, time-domain Maxwell equations.

I. INTRODUCTION

N OWADAYS, a variety of methods exist for the solution
of the time domain Maxwell equations ranging from

the well established FDTD methods to FETD methods and
DGTD methods. In recent years, there has been an increasing
interest in DGTD methods which have been developed on
quadrangular/hexahedral [1] and triangular/tetrahedral [2]
meshes. In this paper, we report on some recent achievements
for improving the accuracy and the computational efficiency
of a DGTD method that was originally introduced in [3]. The
topics addressed here are concerned with (a) dealing with
a nonconforming local refinement of the mesh and a local
definition of the approximation order, (b) designing a hybrid
explicit-implicit time stepping strategy and, (c) computing on
curvilinear domains.

II. HIGH-ORDER DGTD METHOD ON SIMPLICIAL MESHES

A. Continuous Problem

We consider the Maxwell equations for heterogeneous linear
isotropic media. The electric field and
the magnetic field verify

(1)

where the symbol denotes a time derivative and is a
current source term. These equations are set on a bounded poly-
hedral domain of . The permittivity and the magnetic
permeability tensor are varying in space, time-invariant
and both positive functions. Our goal is to solve system (1) in

with boundary , where we impose the fol-
lowing boundary conditions: on and

on , where (resp. ) is the metallic (ab-
sorbing) boundary, .
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Here, denotes the unit outward normal to and
is a given incident field. Finally, system (1) is supplemented with
initial conditions: and .

B. Discretization in Space

We consider a partition of into a set of elements (tri-
angles in 2-D and tetrahedra in 3-D) of size with boundary

such that . For each , and
are respectively the piecewise constant electric permittivity

and magnetic permeability of the medium. For two elements
and in , the intersection is called an in-
terface. For each internal interface , we denote by the
unitary normal vector, oriented from to . For boundary in-
terfaces, the index corresponds to a fictitious element outside

. Let be the set of interior interfaces of , and
the sets of metallic and absorbing boundary interfaces of ,
and let . We denote by the set of
indices of the elements which are neighbors of (having an
interface in common). In the following, to simplify the presen-
tation, we set . We seek approximate solutions to (1) in

where
denotes the space of nodal polynomial functions of de-

gree at most inside the element .
Following the discontinuous Galerkin approach, the electric

and magnetic fields inside each finite element are seeked for as
linear combinations of linearly independent basis vector fields

, , where denotes the local number of de-
grees of freedom inside : and

. The approximate fields are al-
lowed to be discontinuous across element boundaries. For such
a discontinuous field , we define its average through
any internal interface , as .
Dot-multiplying (1) by , inte-
grating over and integrating by parts, yields

(2)

In (2), we now replace the exact fields and by the ap-
proximate fields and in order to evaluate volume inte-
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grals. For integrals over , a specific treatment must be intro-
duced since the approximate fields are discontinuous through
element faces, leading to the definition of a numerical flux. We
choose to use a fully centered numerical flux, i.e., ,

, . Evaluating the surface inte-
grals in (2) using the centered numerical flux, and re-integrating
by parts yields

(3)

The metallic boundary condition on a boundary interface
( in the element index of the fictitious neighboring

element) is weakly imposed, in the sense that traces of fictitious
fields and are used for the computation of numerical
fluxes for the boundary element . More precisely, we set

and . A similar approach is
applied to the numerical treatment of the absorbing boundary
condition which is taken into account through the use of a fully
upwind numerical flux for the evaluation of the corresponding
boundary integral over (see [3] for more details).
Let us denote by and respectively the column vectors

and . Equation (3) can be rewritten as

(4)

where the symmetric positive definite mass matrices (
stands for or ), the symmetric stiffness matrix and the
symmetric interface matrix (all of size ) write

(5)

C. Time Discretization

The set of local system of ordinary differential equations for
each (4) can be formally transformed in a global system.
To this end, we suppose that all electric (resp. magnetic) un-
knowns are gathered in a column vector (resp. ) of size

where stands for the number of elements in
. Then system (4) can be rewritten as

(6)

where we have the following definitions and properties:
• , and are block diagonal matrices with

diagonal blocks equal to , and , respectively.

and are symmetric positive definite matrices, and is
a symmetric matrix.

• is also a block sparse matrix, whose nonzero
blocks are equal to when . Since ,
it can be checked that and then

; thus, is a symmetric matrix.
• is a block diagonal matrix, whose nonzero blocks

are equal to when . In that case,
; thus, is a skew-symmetric matrix.

• and are block diagonal matrices associated
to boundary integral terms for .

Let ; the system (6) rewrites as

(7)

In [3], the semidiscrete system (6) is time integrated using
a second-order Leap-Frog scheme and it is proved that the
resulting DGTD- method is stable under the CFL-like
condition.

III. NONCONFORMING DGTD METHOD

One of the distinguishing features of a DGTD method is that it
can easily accommodate a nonconforming locally refined mesh
(i.e., -refinement) as well as a local definition of the approx-
imation order (i.e., -enrichment), or of both of them in the
context of a -adaptive solution strategy. In [4] we have re-
ported on the results of a preliminary investigation of a -refine-
ment nonconforming DGTD method, by mainly concentrating
on stability issues. Thereafter, this initial study has progressed
towards the development of a -like DGTD- method com-
bining -refinement and -enrichment, in the context of the so-
lution of the 2-D Maxwell equations [5]. Here, we illustrate the
capabilities of this method by considering the simulation of the
scattering of a plane wave MHz by a multilayered
cylinder. Each layer consists of a dielectric nonmagnetic mate-
rial, with for and (relative
values).

To assess the effectiveness of the proposed nonconforming
DGTD- method, we first construct a conforming mesh con-
sisting of 14401 nodes and 28560 triangles and we use different
conforming DGTD- methods (i.e., with a spatially uniform
interpolation order ). Then, a nonconforming mesh is obtained
by locally refining a coarse conforming mesh where the level of
refinement depends on the local wavelength in each region. The
resulting nonconforming mesh consists of 27640 triangles and
14441 nodes in which 920 are hanging nodes. For this noncon-
forming mesh, we assign to each layer a polynomial degree
based on a simple geometrical criterion. Results are shown on
Fig. 1 in terms of the -wise 1-D distribution along m
of the component where the bottom figure displays the ap-
proximate solutions associated to two configurations of the non-
conforming DGTD- method. One can observe that the pro-
posed nonconforming DGTD method treats very well the steep
variations of the field at the material interfaces. In order to com-
pare further the conforming and nonconforming methods, we
estimate the numerical error based on a reference solution com-
puted on a highly refined conforming mesh. For the conforming
DGTD- method, the error on is equal to 1.3% and the
simulation time is 5 h 43 min (simulations have been carried out
on a workstation equipped with an Intel Pentium M 1.7 GHz and
1 GB of RAM) while, for the nonconforming DGTD-
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Fig. 1. Scattering of a plane wave by a multilayered cylinder. 1-D distribution
of� along � � �. Conforming (top) and nonconforming (bottom) DGTD-
methods.

method (where the integer indices represent the polynomial de-
gree within each of the six layers) the corresponding figures are
1.7% and 12 min.

IV. HYBRID EXPLICIT-IMPLICIT DGTD METHOD

Existing DGTD methods generally rely on explicit time in-
tegration schemes and are thus constrained by a stability con-
dition that can be very restrictive on locally refined meshes,
and when the local approximation relies on high order poly-
nomial interpolation. An implicit time integration scheme is a
natural way to obtain a time domain method which is uncondi-
tionally stable, but at the expense of the inversion of a global
linear system at each time step. A more viable approach con-
sists in applying an implicit time integration scheme locally in
the refined regions of the mesh, while preserving an explicit time
scheme in the complementary part. Such an hybrid explicit-im-
plicit DGTD method has been proposed by Piperno in [6]. In this
method, the elements of the mesh are assumed to be partitioned
into two subsets, and , on the basis of an appropriate ge-
ometrical criterion. Then, the elements of are handled using
a Crank-Nicolson scheme while those of are time advanced
using a variant of the classical Leap-Frog scheme known as the
Verlet method (see [6] for more details). We have recently com-
pleted a stability analysis of this method and subsequently im-
plemented it for the solution of the 2-D and 3-D time domain

Fig. 2. Head tissues exposure to an electromagnetic wave emitted from a lo-
calized source. Contour lines of the normalized SAR in log scale.

Maxwell equations discretized in space by a high order con-
forming DGTD- method on unstructured simplicial meshes
[7]. The effectiveness of the resulting hybrid explicit-implicit
DGTD- method is demonstrated here by considering the sim-
ulation of the propagation of an electromagnetic wave emitted
by a localized source in a heterogeneous geometrical model of
head tissues (see Fig. 2). The underlying tetrahedral mesh con-
sists of 61358 vertices and 366208 elements. The nonuniformity
of this mesh can be assessed by evaluating the ratio between the
maximum and minimum values of the local time step which is
approximately equal to 135 in the present case. For the partic-
ular choice of geometric criterion adopted for this simulation,
the distribution of mesh tetrahedra is such that
and and the implicit elements are time advanced
with a global time step which is approximately 4.7 times larger
than the smallest time step of the mesh. The linear system of
equations associated to the implicit elements is solved using
an optimized sparse direct solver and the factorization of the
implicit matrix is performed once for all before entering the
time stepping loop. The simulations have been carried out on
a workstation equipped with an Intel Xeon 2.3 GHz and 16 GB
of RAM. The simulation time for the fully explicit DGTD-
method is 14 h 22 min for a total of 42940 time steps, while the
corresponding time for the hybrid explicit-implicit DGTD-
method is 1 h 49 min for a total of 2780 time steps. The memory
overhead induced by the use a sparse direct solver is 774 MB
and the time for the factorization of the implicit matrix is 98 s.

V. DGTD METHOD ON CURVILINEAR DOMAINS

When designing a high order discretization method, the
relevance of an accurate representation of the domain and its
boundary has been pointed out by several authors (see for ex-
ample [8] in the context of a DG method for compressible flow
problems). In the basic implementation of the DGTD method
described in Section II-B, an affine transformation is assumed
for the mapping of the reference element to the physical ele-
ment when computing the elementary integrals (5). Since the
Jacobian of the affine mapping is constant, these integrals (i.e.,
matrices) can be precomputed and stored for the reference
element, once for all prior to the time stepping loop. In order
to maintain high order accuracy when dealing with curvilinear
geometries, an adapted technique has been considered which
consists in three ingredients: (a) an isoparametric map for
curved elements, (b) a proper numerical integration scheme
for the evaluation of the matrices (5) which are now stored for
each candidate element and, (c) a geometric transformation for
the boundaries (edges in 2-D and faces in 3-D) of the curved
elements. To illustrate the benefits of using this isoparametric
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Fig. 3. Circular PEC resonator: �-convergence of the DGTD- method. � error after two periods as a function of the square root of #DOF.

TABLE I
CHARACTERISTICS OF GRIDS USED FOR THE CIRCULAR PEC RESONATOR

TABLE II
ASYMPTOTIC CONVERGENCE RATES FOR �-REFINEMENT

TABLE III
� ERRORS AFTER 10 PERIODS AND CONVERGENCE RATES ����

FOR �-REFINEMENT

technique, we consider a circular PEC resonator problem. In
order to check the accuracy and the convergence properties
of the proposed methodology we present computations with
polynomial up de degree in the context of a conforming
DGTD- method coupled to a fourth-order Leap-Frog scheme
[9], and with affine, quadratic, and cubic mapping from the
reference element to the real curved elements. The various
computations have been performed on four successively refined
nonuniform grids whose characteristics are summarized in
Table I. Fig. 3 shows the convergence graphs as a function of
the square root of the number of degrees of freedom (#DOF),
while the corresponding global -convergence rates are given
in Table II. The convergence rates obtained with the affine map
are bounded by 2, while those obtained using the quadratic and
cubic maps are bounded by 3 and 3.5, respectively. It is clear

that the solution accuracy of high degree is limited by the
geometrical error, and that the geometrical error converges at
about the same rate as the field error of . The errors and
the corresponding -convergence rates are given in Table III.
The affine map leads to zeroth-order accuracy for , while
the quadratic and cubic maps achieve exponential convergence.

VI. CONCLUSION

We have described several enhancements to a DGTD method
in view of the solution of large-scale time domain electromag-
netic wave propagation problems involving general domains
and heterogeneous media. Future works will aim at the de-
velopment of -refinement and -enrichment strategies in the
3-D case and the extension of the hybrid explicit-implicit time
integration scheme to fourth order accuracy.
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