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Preliminary Investigation of a Nonconforming Discontinuous Galerkin
Method for Solving the Time-Domain Maxwell Equations
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This paper is concerned with the design of a high-order discontinuous Galerkin (DG) method for solving the 2-D time-domain Maxwell
equations on nonconforming triangular meshes. The proposed DG method allows for using nonconforming meshes with arbitrary-level
hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring ele-
ments of the mesh, with a leap-frog time integration scheme. Numerical experiments are presented which both validate the theoretical
results and provide further insights regarding to the practical performance of the proposed DG method, particulary when noncon-
forming meshes are employed.
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I. INTRODUCTION

ALOT of methods have been developed for the numerical
solution of the time-domain Maxwell equations. Finite-

difference time-domain (FDTD) methods based on Yee’s
scheme [1] (a time explicit method defined on a staggered
mesh) are still prominent because of their simplicity and
their nondissipative nature (they hold an energy conservation
property which is an important ingredient in the numerical
simulation of unsteady wave propagation problems). Unfor-
tunately, the discretization of objects with complex shapes or
small geometrical details using cartesian meshes hardly yields
an efficient numerical methodology. A natural approach to
overcome this difficulty in the context of the FDTD method is
to resort to nonconforming local refinement. However, insta-
bilities have often been reported for these methods and rarely
studied theoretically until very recently [2].

Finite-element methods can handle unstructured meshes and
complex geometries. However, the development of high-order
versions of such methods for solving Maxwell’s equations has
been relatively slow. A primary reason is the appearance of
spurious, nonphysical solutions when a straightforward nodal
continuous Galerkin finite-element scheme is used to approxi-
mate the Maxwell curl-curl equations. Bossavit made the fun-
damental observation that the use of special curl-conforming el-
ements [3] could avoid the problem of spurious modes by mim-
icking properties of vector algebra [4].

In an attempt to offer an alternative to the classical finite-ele-
ment formulation based on edge elements, we consider here dis-
continuous Galerkin formulations [5] based on high-order nodal
elements for solving the first-order time-domain Maxwell’s
equations. Discontinuous Galerkin time-domain (DGTD)
methods can handle unstructured meshes, deal with discontin-
uous coefficients and solutions, by locally varying polynomial
order, and get rid of differential operators (and finite-element
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mass matrices) by using Green’s formula for the integration
over control volumes. People rediscover indeed the abilities of
these methods to handle complicated geometries, media and
meshes, to achieve high-order accuracy by simply choosing
suitable basis functions, to allow long-range time integrations
and, last but not least, to remain highly parallelizable at the
end. Whereas high-order discontinuous Galerkin time-domain
methods have been developed on hexahedral [6] and tetrahe-
dral [7] meshes, the design of nonconforming discontinuous
Galerkin time-domain methods is still in its infancy. In prac-
tice, the nonconformity can result from a local refinement of
the mesh (i.e., -refinement), of the interpolation order (i.e.,

-enrichment) or of both of them (i.e., -refinement).
The present study is a preliminary step towards the develop-

ment of a nonconforming discontinuous Galerkin method for
solving the three-dimensional time-domain Maxwell equations
on unstructured tetrahedral meshes. Here, we consider the two-
dimensional case and we concentrate on the situation where
the discretization is locally refined in a nonconforming way
yielding triangular meshes with arbitrary-level hanging nodes.
In this context, the contributions of this work are on the one
hand, a theoretical and numerical stability analysis of high-order
DGTD methods on nonconforming triangular meshes and, on
the other hand, a numerical assessment of the convergence of
such DGTD methods.

II. DISCONTINUOUS GALERKIN TIME-DOMAIN METHOD

We consider the two-dimensional Maxwell equations in the
TM polarization on a bounded domain

and
(1)

where the unknowns are and ,
the electric and magnetic fields, respectively. The electric per-
mittivity and the magnetic permeability of the medium are
assumed to be piecewise constant. We assume that the field com-
ponents as well as the material parameters and do not depend
on the coordinate. The boundary is assumed to be a perfect
electric conductor.
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We consider a partition of into a set of triangles
of size such that the mesh size . To each

we assign an integer and we collect the
in the vector . Within this construction we
admit meshes with possibly hanging nodes, i.e., nonconforming
meshes where triangle vertices can lie in the interior of edges
of other triangles. Each triangle is assumed to be the image,
under a smooth bijective and affine mapping of a fixed master
triangle . In the following, we
seek for approximate solutions to (1) in the finite dimensional
space ,
where denotes the space of polynomials of total degree
at most on the element . We denote by the local
basis of functions spannning the space where is the
local number of degrees of freedom (dof). Note that the polyno-
mial degree may vary from element to element in the mesh
and that a function is discontinuous across ele-
ment interfaces. For two distinct triangles and in , the
intersection is an (oriented) edge which we will call
interface, with oriented normal vector . For the boundary in-
terfaces, the index corresponds to a fictitious element outside
the domain. By nonconforming interface we mean an interface

which has at least one of its two vertices in a hanging node
or such that or both of them. Finally, we denote
by the set of indices of the elements neighboring .

The DGTD method at the heart of this study is based on a
leap-frog time scheme ( is computed at integer time-stations
and and at half-integer time-stations) and totally cen-
tered numerical fluxes at the interface between elements. De-
composing and on element according to

where . Using the notations
and

, the DGTD- method writes

where is the local mass (symmetric positive definite) matrix,
and is the (skew-symmetric) stiffness matrix. The vector
quantities and are defined as

where is the interface matrix on which verifies
(if is an internal interface) and (if

is a boundary interface). Note that, for nonconforming inter-
faces, we calculate the matrix by using a Gaussian quadra-
ture formula [8].

In [8], a numerical dispersion has been observed when a low-
order conforming DGTD- ( and every-
where) is applied. This dispersion error is not reduced notably

TABLE I
NUMERICAL CFL OF THE DGTD- METHOD

TABLE II
NUMERICAL CFL OF THE DGTD- : METHOD

by using a -refinement strategy (i.e., modifying for a fixed ,
yielding nonconforming locally refined meshes). On the other
hand, the dispersion error is minimized when a -enrichment
strategy (i.e., modifying for a fixed ) is used. However, the
latter approach requires a large number of dof thus increases
substantially the computing time and memory usage. We pro-
pose here a -like DGTD method where we combine -refine-
ment and -enrichment strategies. This method consists in using
a high polynomial order in the coarse (i.e., not refined) mesh and
a low-order one in the refined region. The resulting scheme is
referred to as a DGTD- : method where and are
the polynomial degrees in the coarse and fine elements respec-
tively. This kind of scheme is a first step towards a fully adaptive

-refinement method relying on appropriate error estimators.

III. STABILITY ANALYSIS

On any nonconforming mesh, the DGTD method exactly con-
serves the following energy [8]:

and one can show that is a positive definite quadratic form of
all numerical unknowns under the CFL-like sufficient stability
condition on the time step

where is the local speed of propagation, is the surface of
, and . The constants and

verify some inequalities [8] on and

The values of only depend on the local polynomial order
while the values of depend on and on the number of

hanging nodes in the interface . Consequently, if and the
number of hanging nodes increase, the theoretical CFL values
become restrictive [8]. We report here on the CFL values eval-
uated numerically (i.e., by assessing the limit beyond which we
observe a growth of the discrete energy). The corresponding
values of are summarized in Tables I and II for the
DGTD- : and DGTD- methods, respectively. One can
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Fig. 1. Numerical convergence of the DGTD- method with h-refinement.
Nonconforming (left) and conforming (right) triangular mesh.

Fig. 2. Numerical convergence of the DGTD- : method (left) on the
nonconforming triangular mesh (right).

note that for , the DGTD- : method
has the same stability limit as the DGTD- scheme, as long
as the mesh is actually refined. This is not a surprise, since the
DGTD- scheme, which has a reduced stability domain, is
only used on elements of the coarse mesh (which are at least
twice larger than elements of the refined mesh).

IV. CONVERGENCE ANALYSIS

In [7] it is shown that the convergence order of the centered
in space and time DGTD- method, in the case of conforming
simplicial meshes, is

(2)

where is the time step over the interval and the solution
belongs to with . Our attention is turned in the
validity of this result in the case of nonconforming meshes using
the DGTD- and DGTD- : methods, and a preliminary
answer is given here on the basis of numerical simulations.

A. Eigenmode in a PEC Cavity Filled With Vacuum

The first test case that we consider is the propagation of an
eigenmode in a unitary PEC cavity with in nor-
malized units. Numerical simulations make use of triangular
meshes of the square and nonconforming meshes
are obtained thanks to local refinements of a rectangular zone
as shown on Fig. 2, right. Figs. 1 and 2 illustrate respectively
the numerical convergence of the DGTD- and DGTD-
: methods using conforming and nonconforming triangular
meshes, in terms of the evolution of the -error as a func-
tion of the square root of the number of dof. These errors are

TABLE III
NUMERICAL CONVERGENCE OF THE DGTD- METHOD

TABLE IV
NUMERICAL CONVERGENCE OF THE DGTD- : METHOD

TABLE V
L ERROR, CPU TIME (SECONDS), NUMBER OF DOF AND NUMBER OF TIME

STEPS MEASURED AFTER TWO PERIODS

measured after two periods. Corresponding asymptotic conver-
gence orders are summarized in Tables III and IV. As it could
be expected from the use of a second-order accurate time inte-
gration scheme, the asymptotic convergence order is bounded
above by 2 independently of the interpolation order (excepted
for on nonconforming mesh for which we obtain
convergence orders higher than 2) and higher order convergence
rates will require more accurate time integration schemes. Fur-
thermore, we can observe that for , the convergence
order is . From these points of view, it seems that the
formula (2) is suboptimal and suggests that theoretical conver-
gence study conducted in [7] might be improved in view of the
development of - and -adaptive DGTD methods. Moreover,
we have observed in the case of DGTD- : method that it
is not necessary to increase to more than , since the
convergence order is not improved.

Table V shows the CPU times, the errors, the number of
time steps # , and the number of dof ( dof) for some cases
of the proposed methods. One can see that to achieve a given ac-
curacy the gains of CPU time and memory consumption is no-
table if we use the DGTD- : method. Moreover, to reach a
high accuracy, the cost of the nonconforming DGTD- method
is comparable with the conforming one.
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Fig. 3. Eigenmode in a PEC cavity containing a lossless material.

TABLE VI
NUMERICAL CONVERGENCE OF THE DGTD- METHOD

TABLE VII
NUMERICAL CONVERGENCE OF THE DGTD- : METHOD

B. Eigenmode in a PEC Cavity With a Dielectric Material

In this problem, a lossless dielectric with a relative permit-
tivity is enclosed by air in the direction, and the media
are homogeneous along the direction and nonmagnetic. The
computational domain is en-
veloped by PEC walls. The permittivity is given as if

and , and if
and , where and . An analytical so-
lution for time varying electromagnetic fields is known for this
problem [9]. Contour lines of the and components at time

are shown in Fig. 3. The nonconforming meshes are
obtained by refining the heterogeneous zone. Numerical con-
vergence orders measured at time are summarized in
Tables VI and VII. One can note that the convergence of the
DGTD- method is notably slower than what was ob-
served with the previous test case, which is the result of the pres-
ence of a material interface in the domain. On the other hand,
Table VII shows that the convergence rate is improved with the
DGTD- : method using a low interpolation order in the
heterogenuous zone.

Table VIII shows the CPU times, the number of dof and the
number of time steps to achieve a prescribed error level. The
results of the DGTD- : on nonconforming meshes are
very satisfactory comparing with the conforming DGTD-
method.

TABLE VIII
CPU TIME (SECONDS), NUMBER OF DOF AND NUMBER OF TIME STEPS TO

ACHIEVE AN ERROR OF 3.0E-03 AT t = 1:0

V. CONCLUDING REMARKS AND FUTURE WORKS

We have presented preliminary results concerning a noncon-
forming discontinuous Galerkin method designed on unstruc-
tured triangular meshes for solving the time-domain Maxwell
equations. The nonconformity is linked either to the use of lo-
cally refined meshes with an arbitrary-level of hanging nodes
(i.e., -refinement), or to the use of a space varying interpola-
tion order (i.e., -enrichment), or a combination of both (i.e.,

-refinement). Ongoing works target the extension to the nu-
merical resolution of the 3-D time-domain Maxwell equations
considering unstructured tetrahedral meshes.
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