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Abstract—The great majority of numerical calculations of the
specific absorption rate (SAR) induced in human tissues exposed to
microwaves are performed using the finite difference time-domain
(FDTD) method and voxel-based geometrical models. The straight-
forward implementation of the method and its computational ef-
ficiency are among the main reasons for FDTD being currently
the leading method for numerical assessment of human exposure
to electromagnetic waves. However, the rather difficult departure
from the commonly used Cartesian grid and cell size limitations
regarding the discretization of very detailed structures of human
tissues are often recognized as the main weaknesses of the method
in this application context. In particular, interfaces between tissues
where sharp gradients of the electromagnetic field may occur are
hardly modeled rigorously in these studies. We present here an al-
ternative numerical dosimetry methodology which is based on a
high order discontinuous Galerkin time-domain (DGTD) method
and adapted geometrical models constructed from unstructured
triangulations of tissue interfaces, and discuss its application to the
calculation of the SAR induced in head tissues.

Index Terms—Discontinuous Galerkin, finite element, time-do-
main Maxwell’s equations, numerical dosimetry, unstructured
meshes.

I. INTRODUCTION

N OWADAYS, numerical modeling is increasingly used and
progressively becoming a mandatory path for the study of

the interaction of electromagnetic fields with biological tissues.
This is in particular the case for the evaluation of the specific
absorption rate (SAR) which is a measure of the rate at which
electric energy is absorbed by the tissues when exposed to a
radio-frequency electromagnetic field. The SAR is defined as
the power absorbed per mass of tissue and has units of watts
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per kilogram. Numerical SAR calculations are intensively con-
sidered for dosimetric studies of the exposure of human tissues
to microwave radiations from wireless communication systems
[1]–[3] to cite but a few of many examples. These studies are
useful for assessing the possible thermal effects (temperature
rise in tissues resulting from electric energy dissipation) as well
as for compliance testing to regulatory limits. SAR calculations
are also relevant for certain medical applications such as for
the design of microwave hyperthermia systems [4]–[6] and for
the design of micro-antennas to be implanted inside the human
body [7].

Despite the high complexity both in terms of heterogeneity
and geometrical features of tissues, the great majority of
numerical dosimetry studies have been conducted using the
widely known finite difference time-domain (FDTD) method
due to Yee [8]. In this method, the whole computational domain
is discretized using a structured (Cartesian) grid. Due to the
possible straightforward implementation of the algorithm and
the availability of computational power, FDTD is currently the
leading method for numerical assessment of human exposure
to electromagnetic waves. In the particular case of mobile
phone radiation, the FDTD method is applied to heterogeneous
discretized models of human head tissues built from medical
images. Thus, the grid generation process is highly simplified
since the voxel-based image can be used at a minimal effort
as the computational grid for the FDTD method. In spite of
its flexibility and second-order accuracy in a homogeneous
medium, the Yee scheme suffers from serious accuracy degra-
dation when used to model curved objects or when treating
material interfaces. Indeed, the so-called stair-casing approx-
imation may lead to local zeroth-order and at most first-order
accuracy; it may also produce locally non-convergent results
[9]. Furthermore, for Maxwell’s equations with discontinuous
coefficients, the Yee scheme might not be able to capture the
possible discontinuity of the solution across the interfaces [9].
A number of finite difference methods have been proposed in
the past for the treatment of curved interfaces. The usual and
straightforward approach is to introduce local modifications
into the Yee scheme but still keep the staggered grid [10], [11],
or to use local mesh refinements [12], [13]. Some studies have
been concerned with high-order embedded FDTD schemes in
the presence of material interfaces [14], including the staggered
fourth-order accurate methods by Yefet et al. [15], and the
fourth-order orthogonal curvilinear staggered grid methods by
Xie et al. [16]. Most of these methods, however, have not really
penetrated into main stream user community, partly due to
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their complicated nature and partly because these new methods
themselves often introduce other complications.

In an attempt to offer an alternative numerical dosimetry
methodology which allows for a realistic modeling of geomet-
rical features and tissue interfaces, we consider here the use of a
discontinuous finite element method formulated on nonuniform
tetrahedral meshes. The method is known as the discontinuous
Galerkin method and has been studied by several authors
rather recently for solving the time-domain Maxwell equa-
tions [17]–[19]. Discontinuous Galerkin time-domain (DGTD)
methods based on discontinuous finite element spaces, easily
handle elements of various types and shapes, irregular non-
conforming meshes [20], and even locally varying polynomial
degree, and hence offer great flexibility in the mesh design.
They also lead to (block-) diagonal mass matrices and therefore
yield fully explicit, inherently parallel methods when coupled
with explicit time stepping. Moreover, continuity is weakly
enforced across mesh interfaces by adding suitable bilinear
forms (so-called numerical fluxes) to the standard variational
formulations. The DGTD method that we consider here is a
preliminary extension to the three-dimensional case of the one
presented in [20].

Similarly to the FDTD based numerical dosimetry method-
ologies, the DGTD method considered here relies on geo-
metrical models built from medical images. However, in the
present case, the viewpoint that we adopt is to use realistic
geometrical models of head tissues whose construction is
constrained by triangulations of interfaces between different
tissues, that are extracted from appropriately segmented MR
images. In practice, this can be achieved for a limited number
of tissues thus implying that a form of homogeneization is
applied to the remaining tissues. In this context, one objective
of this work is to study numerically the possibility of using
adapted geometrical models consisting of locally refined/coars-
ened tetrahedral meshes, constructed from the extracted set
of triangulated tissue interfaces. In addition, since the com-
putational domains under consideration also involve a free
space propagation region external to the head, we also explore
a numerical modeling strategy which combines a structured
(i.e., uniform) tetrahedral mesh for the propagation in the free
space region, with a fully unstructured tetrahedral mesh for the
propagation in the head tissues. Such meshes, whether they
are globally conforming or not (i.e., with hanging nodes) can
be easily handled by a discontinuous Galerkin formulation, as
can be a local definition (i.e., element-wise) of approximation
order of the electromagnetic field. This feature is also exploited
in the present study with the overall objective to reduce the
computing time while preserving an acceptable accuracy with
reference to a high-resolution numerical solution computed on
globally refined mesh.

The rest of the paper is organized as follows: the initial and
boundary value problem at hand and its DGTD discretization are
presented in Section II; in Section III we describe the strategy
used for the construction of realistic geometrical models of head
tissues based on surface triangulations and volumic tetrahedral
meshes; numerical results are presented in Section IV; finally,
Section V concludes this work and sets some future research
directions.

II. DGTD METHOD ON TETRAHEDRAL MESHES

A. Continuous Problem

We consider the Maxwell equations in three space dimen-
sions for heterogeneous linear isotropic media. The electric field

and the magnetic field
verify

(1)

where the symbol denotes a time derivative and is a
current source term. These equations are set on a bounded poly-
hedral domain of . The electric permittivity and the
magnetic permeability coefficients are varying in space,
time-invariant and both positive functions. The current source
term is the sum of the conductive current (where

denotes the electric conductivity of the media) and of an
applied current associated to a localized source for the inci-
dent electromagnetic field. Our goal is to solve system (1) in
a domain with boundary , where we im-
pose the following boundary conditions: on ,
and on where

. Here denotes the unit outward
normal to and is a given incident field. The
first boundary condition is called metallic (referring to a per-
fectly conducting surface) while the second condition is called
absorbing and takes here the form of the Silver–Müller condi-
tion which is a first order approximation of the exact absorbing
boundary condition. This absorbing condition is applied on
which represents an artificial truncation of the computational
domain.

B. Space Discretization

We consider a partition of into a set of tetrahedra of
size with boundary such that . To each

, we assign a non-negative integer that is the local
interpolation degree. For each , the parameters and are
respectively the local electric permittivity and magnetic perme-
ability of the medium, which are assumed constant inside the
element . For two distinct tetrahedra and in , the in-
tersection is a convex polyhedron which we will call
interface. For each internal interface , we denote by the
unitary normal vector, oriented from to . For the boundary
interfaces, the index corresponds to a fictitious element out-
side the domain. We denote by the union of all interior inter-
faces of and by the union of all boundary interfaces of

. Finally, we denote by the set of indices of the elements
which are neighbors of (having an interface in common). In
the following, to simplify the presentation, we set . For a
given partition , we seek approximate solutions to (1) in the
finite element space

(2)

where denotes the space of nodal polynomial functions
of degree at most inside . Following the discontinuous
Galerkin approach, the local electric and magnetic fields

are defined as combinations of linearly independent
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basis vector fields . Let
where denotes the number of degrees of freedom in-
side . The approximate fields , defined by

are allowed to be com-
pletely discontinuous across element boundaries. For such a
discontinuous field , we define its average through
any internal interface , as .
Note that for any internal interface .
Because of this discontinuity, a global variational formulation
cannot be obtained. However, dot-multiplying (1) by ,
integrating over each single element and integrating by parts,
yields

(3)

In (3), we now replace the exact fields and by the approx-
imate fields and in order to evaluate volume integrals.
For integrals over , a specific treatment must be introduced
since the approximate fields are discontinuous through element
faces, leading to the definition of a numerical flux. We choose
to use a fully centered numerical flux, i.e.,

. The metallic boundary condition on
a boundary interface ( in the element index of the
fictitious neighboring element) is dealt with weakly, in the sense
that traces of fictitious fields and are used for the com-
putation of numerical fluxes for the boundary element . More
precisely, we set and . Sim-
ilarly, the absorbing boundary condition is taken into account
through the use of a fully upwind numerical flux for the eval-
uation of the corresponding boundary integral over
(see [18] for more details). Evaluating the surface integrals in
(3) using the centered numerical flux, and reintegrating by parts
yields

(4)

Equation (4) can be rewritten in terms of scalar unknowns. In-
side each element, the fields are recomposed according to

and and let us now de-
note by and respectively the column vectors
and . Then, (4) is equivalent to

(5)

where the symmetric positive definite mass matrices (
stands for or ), the symmetric stiffness matrix (both of
size ) and the symmetric interface matrix (of size

) are given by

C. Time Discretization

The set of local system of ordinary differential equations for
each (5) can be formally transformed in a global system.
To this end, we suppose that all electric (resp. magnetic) un-
knowns are gathered in a column vector (resp. ) of size

where stands for the number of elements in
. Then system (5) can be rewritten as

(6)

where we have the following definitions and properties:
• and are block diagonal matrices with

diagonal blocks equal to and respectively.
and are symmetric positive definite matrices, and is
a symmetric matrix.

• is also a block sparse matrix, whose nonzero
blocks are equal to when . Since ,
it can be checked that and then

; thus, is a symmetric matrix.
• is a block diagonal matrix, whose nonzero blocks

are equal to when . In that case,
; thus, is a skew-symmetric matrix.

• and are block diagonal matrices associated
to boundary integral terms for .

Consequently, if we set , the system (6) rewrites
as

(7)

The semi-discrete system (7) is time integrated using a second-
order leap-frog scheme as

(8)

The resulting fully explicit DGTD- method is analyzed in
[18] where it is shown that, when , the method is non-dis-
sipative, conserves a discrete form of the electromagnetic en-
ergy and is stable under the CFL-like condition

(9)

where denotes the canonical matrix norm and the matrix
is the inverse square root of .
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Fig. 1. Surface mesh of the skin.

Fig. 2. Surface mesh of the skull.

D. Numerical Treatment of Conductive Materials

Human tissues are conductive materials and thus require that
a conductive current is taken into account in (1). It
is straightforward to verify that the space discretization of this
current term in the framework of the discontinuous Galerkin
formulation described in Section II-B leads to the introduction
of the term in the right-hand side of the first equation
of (5). Then this term is time integrated as
meaning that both the left- and right-hands side terms of (8) are
affected by the discretization of this conductive current.

III. TETRAHEDRAL MESH-BASED GEOMETRIC

MODELS OF HEAD TISSUES

The DGTD- method described previously assumes that
the computational domain is discretized using tetrahedral ele-
ments. In this study, we aim at exploiting this numerical method
for the calculation of the SAR induced in head tissues. A first
step is thus to construct compatible geometrical models of the
head tissues. Starting from magnetic resonance images of the
Visible Human 2.0 project [21], head tissues are segmented and
the interfaces of a selected number of tissues are triangulated.
Different strategies can be used in order to obtain a smooth
and accurate segmentation of head tissues and interface trian-
gulations as well. The strategy adopted in this work consists in
using a variant of Chew’s algorithm [22], based on Delaunay
triangulation restricted to the interface, which allows to control
the size and aspect ratio of interfacial triangles [23]. Example
of triangulations of the skin, skull and brain are shown on
Figs. 1–3. Then, these triangulated surfaces together with a
triangulation of the artificial boundary (absorbing boundary)
of the overall computational domain are used as inputs for the
generation of volume meshes. Finally, the GHS3-D tetrahedral
mesh generator [24] is used to mesh the volume domains be-
tween the various interfaces. The exterior of the head must also

Fig. 3. Surface mesh of the brain.

Fig. 4. Simplified mobile phone model and its positioning.

be meshed, up to a certain distance. Then the computational
domain is artificially bounded by a surface which defines the
boundary on which the Silver–Müller absorbing boundary
condition is imposed. Moreover, a simplified mobile phone
model (metallic box with a quarter-wave length mounted on the
top surface) is included and placed in vertical position close to
the right ear (see Fig. 4). The surface of this metallic box defines
the boundary . Overall, the geometrical models considered
here consist of four tissues (skin, skull, CSF—Cerebro Spinal
Fluid and brain).

IV. NUMERICAL RESULTS

A. Problem Setting

All the numerical experiments reported here are concerned
with the propagation of an electromagnetic wave emitted by a
dipolar source localized (and centered) between the lower tip of
the antenna and the top surface of the metallic box, and is mod-
eled by a current source term of the form ( is the localization
point of the source)

(10)

where is a sinusoidally varying temporal signal and is
the amplitude of the signal. This source current is easily intro-
duced and discretized according to the discontinuous Galerkin
formulation discussed in Subsection II-B. The physical simu-
lation time has been fixed to 5 periods of the temporal signal
of (10). A discrete Fourier transform of the components of the
electric field is computed during the last period of the simula-
tion. The characteristics of the tissues are summarized in Table I
where the values of the electrical permittivity correspond to a
frequency MHz. We first present and discuss nu-
merical results obtained with a uniform approximation order
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TABLE I
EXPOSURE OF HEAD TISSUES TO A LOCALIZED SOURCE RADIATION:

ELECTROMAGNETIC CHARACTERISTICS OF TISSUES

DGTD- method (i.e., we set ) and then con-
sider the case of a nonuniform order DGTD- method. One
of the objectives of this numerical study is to show that the use
of a nonuniform order DGTD- method combined with ap-
propriately coarsened geometrical models allows for a notable
reduction of the computing time without sacrificing the accu-
racy of the results.

B. Numerical Assessment of the Stair-Casing Effect

As stated in the introductory part of this paper, the present
work aims at studying an alternative numerical dosimetry
methodology which allows for a realistic modeling of geo-
metrical features and tissue interfaces in order to alleviate the
stair-casing effect inherent to classical finite difference time-do-
main methods making use of Cartesian grids. We further discuss
and illustrate numerically this effect here by focusing on two
modeling situations: first, we consider a model test problem
in 2-D for which an analytical solution exists and we compare
the accuracy of calculations performed using DGTD methods
designed on uniform quadrangular meshes on one hand, and
on unstructured triangular meshes on the other hand; second,
as a more realistic configuration in 3-D, we compare the ap-
proximate solution obtained using an industrial FDTD method
[12] with that of the DGTD- method discussed here, for the
propagation in a heterogeneous model of head tissues.

1) Standing Wave in a 2-D Circular PEC Cavity: The first
test problem aims at allowing a rigorous assessment of the stair-
casing effect thanks to the availability of an analytical solution
of the 2-D TMz Maxwell equations. Indeed, we consider a cir-
cular PEC resonator with radius m. The exact time-do-
main solution of the problem is

where m/s ( GHz), which is obtained
from the PEC boundary condition at m;
represents the usual polar coordinates and ( is a positive in-
teger) stands for the th-order Bessel functions of the first kind.
We compare approximate solutions obtained using a DGTD-
method formulated on a triangular mesh with those resulting
from a DGTD- method formulated on an orthogonal quad-
rangular mesh. Three triangular meshes (MT1 to MT3 on the
figures) have been considered with respectively 310, 1320, and
5654 elements. The minimal length of the edges of each mesh
is respectively equal to 0.0412 m, 0.0131 m, and 0.0061 m.
Similarly, three quadrangular meshes (MQ1 to MQ3 on the fig-
ures) have been used with respectively 241, 1109, and 4717 el-
ements. These meshes are uniform with 0.0526 m,

Fig. 5. Standing wave in a 2-D circular PEC cavity. Unstructured triangular
meshes MT1 to MT3 (left figure) and uniform quadrangular meshes MQ1 to
MQ3 (right figure).

Fig. 6. Standing wave in a 2-D circular PEC cavity: time evolution of the �
error. Comparisons between the DGTD- (left figure) and DGTD- (right
figure) methods.

Fig. 7. Standing wave in a 2-D circular PEC cavity: time evolution of the �
component. Comparisons between the DGTD- (left figure) and DGTD-
(right figure) methods.

0.0256 m, and 0.0126 m for each mesh respectively. Sample
meshes are shown in Fig. 5. For this particular study, we limited
ourselves to the case . We plot in Figs. 6 and 7 the time
evolution respectively, of the error between the approximate
and exact solutions, and of the component. It is clearly seen
on the plots of Fig. 6 and Fig. 7 that although the accuracy of
the DGTD- calculations improves with finer discretizations
it remains far from acceptable. In comparison, the approximate
solution resulting from the DGTD- method using mesh MT2
is close to the analytical solution.

2) Propagation in a 3-D Heterogeneous Head Model: In
the second test problem, we consider an heterogeneous model
of head tissues has described in Subsection IV-A but without
taking into account the model mobile phone geometry in order
to focus on the influence of the discretization of the interfaces
between tissues. A dipolar source characterized by a current
source term of the form (10) with A/m .
We make use of a relatively coarse tetrahedral discretization of
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Fig. 8. Comparisons between the FDTD (top figures) and DGTD (bottom fig-
ures: DGTD- method) methods. Contour lines of normalized local SAR (se-
lected cut plane).

TABLE II
CHARACTERISTICS OF THE FULLY UNSTRUCTURED TETRAHEDRAL

MESHES OF HEAD TISSUES

the head tissues containing 7 162 936 elements. The minimum,
maximum, and average lengths of the edges of this mesh are re-
spectively equal to 0.63 mm, 3.11 mm, and 26.81 mm. A numer-
ical simulation has been performed for a duration of 10 periods
of the temporal signal of (10). The corresponding total emitted
power is W and the maximum value of the local
SAR normalized to the total emitted power is 83.57 W/kg. The
same problem has also been considered with a FDTD method
[12] using a uniform Cartesian mesh with
mm, consisting of 96 242 232 cells. The total emitted power
is in this case W and the maximum value of the
local SAR normalized to the total emitted power is 76.92 W/kg.
Contour lines of the local SAR normalized to the total emitted
power plotted in a selected cut plane are compared in Fig. 8.
Although the SAR patterns are globally similar we observe no-
ticeable differences in the ear region. It is clear that the dis-
cretization of the air-skin interface in this region greatly impacts
the local SAR pattern. In particular, we note that the maximum
local SAR characterizing the DGTD- method is almost 38%
higher.

C. DGTD Results With Various Geometrical Models

1) Fully Unstructured Geometrical Models: We consider a
sequence of three unstructured tetrahedral meshes whose char-
acteristics are summarized in Table II. For these meshes, the ar-
tificial boundary is a spherical surface approximately located
one wavelength away from the skin. The tetrahedral meshes are
globally nonuniform and the quantities , and

Fig. 9. Calculations with the DGTD- method. Mesh M1: contour lines of
local SAR over maximum local SAR in log scale (selected cut planes).

Fig. 10. Calculations with the DGTD- method. Mesh M1: contour lines of
local SAR over maximum local SAR in log scale (selected cut planes).

Fig. 11. Calculations with the DGTD- method. Mesh M1: contour lines of
local SAR over maximum local SAR in log scale (selected cut planes).

Fig. 12. Calculations with the DGTD- method. Mesh M3: contour lines of
local SAR over maximum local SAR in log scale (selected cut planes).

in Table II, respectively, denote the minimum, maximum, and
average lengths of mesh edges. For the following simulations,
we make use of a dipolar source characterized by a current
source term of the form (10) with A/m . Contour
lines of the local SAR normalized to the maximum value of the
local SAR are shown in Figs. 9–11 for calculations based on
the coarsest mesh (i.e., mesh M1), and in Fig. 12 for a calcula-
tion based on the finest mesh (i.e., mesh M3). Besides, Fig. 13
portrays the contour lines of the local SAR normalized to the
total emitted power for this latter calculation. Finally, Table III
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Fig. 13. Calculations with the DGTD- method. Mesh M3: contour lines of
normalized local SAR (selected cut planes).

TABLE III
CALCULATIONS WITH THE DGTD- METHOD. MAXIMUM

VALUE OF THE NORMALIZED LOCAL SAR

summarizes the values of the local SAR normalized to the total
emitted power.

In order to discuss these results, we consider that the nu-
merical solution computed with mesh M3 using the DGTD-
method defines a reference solution. Patterns of the contour
lines for calculations, respectively, performed with mesh M1
using the DGTD- method and with mesh M3 using the
DGTD- method are very similar. However variations cer-
tainly exist locally since the ranges of the plotted values differ
(especially for the local SAR normalized to the total emitted
power). In Table III, the quantities given parenthetically are the
difference with the reference value (i.e., the one associated to
mesh M3 and the DGTD- method) and the corresponding
error level. We note here that the relative error tends to increase
when switching from to for a given discretization
mesh. Again, this should not be interpreted as a counter effect
of an increase of the approximation order since this relative
error is evaluated on the basis of a solution computed on the
finest mesh which is based on high-resolution triangulations of
the tissue interfaces (see the figures in Section III). Rather, we
can surely conclude that the discretization of the geometrical
features of tissues has a greater impact on accuracy than the
interpolation order in the DGTD- method (first column of
Table III). Numerical simulations have been conducted on a
Bull Novascale 3045 parallel system consisting of Intel Ita-
nium 2/1.6 GHz nodes interconnected by a high-performance
Infiniband network. Each node consists of a 8 core board with
21 GB of shared memory. Computing times are summarized in
Table IV where the quantity given parenthetically is the number
of cores used for the corresponding simulation. The paral-
lelization of the DGTD- solver is based on a single program
multiple data (SPMD) strategy which combines a partitioning
of the tetrahedral mesh using a graph partitioning tool (MeTiS

TABLE IV
CALCULATIONS WITH THE DGTD- METHOD. COMPUTING TIMES

Fig. 14. Hybrid structured-unstructured tetrahedral mesh of head tissues.

[25] in the present case), with a message passing programming
using the message passing interface (MPI) environment. Be-
sides, for further comparisons with simulations performed on
a high-end workstation that are discussed in Section IV-C2,
we have also estimated the sequential computing time for the
simulation based on mesh M3 and the DGTD- method. This
workstation is equipped with a Intel Xeon E5345/2.33 GHz
CPU and 32 GB of RAM. The corresponding computing time
is 936 hours (i.e., 39 days).

2) Hybrid Structured-Unstructured Geometrical Models:
The results obtained previously suggest that one should keep a
sufficiently accurate representation of the geometrical features
of the tissues and, in the regions where the mesh is refined and
the discretization parameter is small, limit the approximation
order to . Here, we investigate further this possibility
by considering the use of hybrid structured-unstructured tetra-
hedral meshes which are built in the following way: 1) the
artificial boundary is defined as a plane-parallel surface;
2) we introduce a second plane-parallel surface, denoted by

, delimiting a volume which encompasses the head and the
phone model; 3) the volume space between and (vacuum
space) is discretized using a uniform (structured) tetrahedral
mesh; 4) the volume delimited by the surface is discretized
using a nonuniform (unstructured) tetrahedral mesh. We stress
that the resulting tetrahedral mesh is conforming, i.e., the
same triangulated surface is used for the construction of
the structured and unstructured parts of the tetrahedral mesh.
Given this type of geometrical model, we consider now using a
DGTD- method where is the interpolation order for
the approximation of the electromagnetic field in the elements
of the unstructured part of the mesh while is adopted in the
elements of the structured part. An example of such a mesh is
shown in Fig. 14 (planar view in a selected plane). Note that the
size of the elements in the structured part are intentionally kept
relatively large. This motivates the use of a high interpolation
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TABLE V
CHARACTERISTICS OF THE HYBRID STRUCTURED-UNSTRUCTURED

TETRAHEDRAL MESHES OF HEAD TISSUES

TABLE VI
CALCULATIONS WITH THE DGTD- AND DGTD- METHODS.

MAXIMUM VALUE OF THE NORMALIZED LOCAL SAR

TABLE VII
CALCULATIONS WITH THE DGTD- AND DGTD-

METHODS. COMPUTING TIMES

order in these elements; typically, in the following, we set
and . The characteristics of the tetrahedral

meshes that have been used for this study are summarized in
Table V. These meshes are based on the surface triangulations
of the tissues already used for the construction of mesh M2 of
Table II. As previously, numerical simulations have been per-
formed for a duration of 5 periods of the temporal signal of (10).
Table VI summarizes the values of the local SAR normalized to
the total emitted power. The error levels are again given with re-
spect to the numerical solution obtained using the unstructured
mesh M3 and the DGTD- method (see Table III). Finally,
computing times are given in Table VII. Overall, these results
show that the numerical modeling strategy which consists in
the association of a hybrid structured-unstructured geometrical
model with a nonuniform order DGTD- method offers
a good compromise between accuracy and computing time of
the simulation. For instance, for the calculation based on mesh
M1h and the DGTD- method, the relative error on the
maximum value of the local SAR is 2.5% while the sequential
computing time is reduced from 936 hours to less than 5 hours.
However, we recall that the construction of mesh M2h is based
on the surface triangulations of the tissues already used for the
construction of mesh M2 of Table II; therefore, a more friendly
comparison should involve a hybrid structured-unstructured
mesh relying on the surface triangulations adopted for the
construction of the fully unstructured mesh M3. Using such a
mesh should lowered the gain in computing time with regards
to a calculation with the fully unstructured mesh M3, but it
should also improve the accuracy of the results.

V. CONCLUSION

In this work, we have performed a detailed assessment of the
application of a high order DGTD method for the simulation
of the propagation of an electromagnetic wave within unstruc-
tured tetrahedral mesh based geometrical models of head tis-
sues. The distribution of the SAR and the maximum value of the
local SAR have been used as a basis for comparisons of numer-
ical solutions obtained using several geometrical models corre-
sponding to the discretization of four tissues (skin, skull, CSF,
and brain). In particular, we have studied the possibility of coars-
ening the discretization of tissue interfaces on one hand, and of
combining structured (for the propagation in free space) and un-
structured (for the propagation in the tissues) tetrahedral meshes
on the other hand, in order to reduce the computing time of the
simulation subjected to some target accuracy level. The DGTD
method can easily handle such hybrid structured-unstructured
geometrical models. In addition, it allows for a nonuniform def-
inition of the approximation order and this has been exploited
here only partially by defining different approximation orders
for the structured and unstructured parts of a mesh. A first nat-
ural generalization of this DGTD- formulation would be
to allow for a definition of the approximation order at the ele-
ment level based on an appropriate criterion. Ideally, this crite-
rion should be based on some form of a posteriori error estima-
tion; however, the obtention of such a criterion for the heteroge-
nous time-domain Maxwell equations is still an opened ques-
tion. Besides, the use of unstructured or hybrid structured-un-
structured tetrahedral meshes incurs a reduction of the allow-
able time step for a stable explicit time stepping. This reduction
of the time step is often due to only a small fraction of the ele-
ments of the mesh (typically less than 1%). In such situations,
the efficiency of the DGTD- method can be substantially im-
proved by resorting to a hybrid explicit-implicit time stepping
strategy. Such a strategy has been recently proposed in [26]. The
proposed hybrid explicit-implicit DGTD- method combines
a leap-frog scheme with a Crank–Nicolson scheme and assumes
a partitioning of the mesh elements into two sets based on a geo-
metric criterion.
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