
Calculation of the SAR Induced in Head Tissues

Using a High Order DGTD Method and

Triangulated Geometrical Models
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Abstract—The great majority of numerical calculations of the
Specific Absorption Rate (SAR) induced in human tissues exposed
to microwaves are performed using the Finite Difference Time
Domain (FDTD) method and voxel based geometrical models.
The straightforward implementation of the method and its
computational efficiency are among the main reasons for FDTD
being currently the leading method for numerical assessment of
human exposure to electromagnetic waves. However, the rather
difficult departure from the commonly used cartesian grid and
cell size limitations regarding the discretization of very detailed
structures of human tissues are often recognized as the main
weaknesses of the method in this application context. We present
here an alternative numerical dosimetry methodology combining
a high order Discontinuous Galerkin Time Domain (DGTD)
method and adapted geometrical models based on unstructured
triangulations, and discuss its application to the calculation of
the SAR induced in head tissues.

I. INTRODUCTION

Nowadays, numerical modeling is increasingly used and

progressively becoming a mandatory path for the study of the

interaction of electromagnetic fields with biological tissues.

This is for instance the case for the evaluation of the distri-

bution of the SAR which is a measure of the rate at which

electric energy is absorbed by the tissues when exposed to

a radio-frequency electromagnetic field. The SAR is defined

as the power absorbed per mass of tissue and has units of

watts per kilogram. It is usually averaged either over the

whole body, or over a small sample volume (typically 1g

or 10g of tissue). Such SAR calculations are at the basis

of numerical dosimetry studies of the exposure of human

tissues to microwave radiations from wireless communication

systems [1]- [2]- [3]. These studies are useful for assessing the

possible thermal effects (temperature rise in tissues resulting

from electric energy dissipation) as well as for compliance

testing to regulatory limits.

Despite the high complexity both in terms of heterogene-

ity and geometrical features of tissues, the great majority

of numerical dosimetry studies have been conducted using

the widely known FDTD method due to Yee [4]. In this

method, the whole computational domain is discretized using a

structured (cartesian) grid. Due to the possible straightforward

implementation of the algorithm and the availability of com-

putational power, FDTD is currently the leading method for

numerical assessment of human exposure to electromagnetic

waves. In the particular case of mobile phone radiation, nu-

merical dosimetry studies are conducted by solving the system

of Maxwell equations on heterogeneous discretized models of

human head tissues built from medical images. Thus, the grid

generation process is highly simplified since the voxel based

image can be used at a minimal effort as the computational

grid for the FDTD method. In spite of its flexibility and

second-order accuracy in a homogeneous medium, the Yee

scheme suffers from serious accuracy degradation when used

to model curved objects or when treating material interfaces.

In an attempt to offer an alternative numerical dosimetry

methodology which allows for a realistic modeling of geo-

metrical features and tissue interfaces, we consider here the

use of a discontinuous finite element method formulated on

non-uniform tetrahedral meshes. The method is known as

the discontinuous Galerkin method and has been studied by

several authors rather recently for solving the time-domain

Maxwell equations [5]- [6]- [7]. Discontinuous Galerkin time-

domain (DGTD) methods based on discontinuous finite el-

ement spaces, easily handle elements of various types and

shapes, irregular non-conforming meshes [8], and even locally

varying polynomial degree, and hence offer great flexibility in

the mesh design. They also lead to (block-) diagonal mass

matrices and therefore yield fully explicit, inherently parallel

methods when coupled with explicit time stepping.

II. HIGH ORDER DGTD METHOD

A. Continuous Problem

We consider the Maxwell equations in three space di-

mensions for heterogeneous linear isotropic media. The elec-

2010 URSI International Symposium on Electromagnetic Theory

978-1-4244-5153-1/10/$26.00 ©2010 IEEE 547



tric field ~E(~x, t) = t(Ex, Ey, Ez) and the magnetic field
~H(~x, t) = t(Hx, Hy, Hz) verify:

ǫ∂t ~E − curl ~H = − ~J, µ∂t ~H + curl~E = 0, (1)

where the symbol ∂t denotes a time derivative and ~J(~x, t) is

a current source term. These equations are set on a bounded

polyhedral domain Ω of R
3. The permittivity ǫ(~x) and the

magnetic permeability tensor µ(~x) are varying in space, time-

invariant and both positive functions. Our goal is to solve

system (1) in a domain Ω with boundary ∂Ω = Γa ∪ Γm,

where we impose the following boundary conditions:

~n× ~E = 0 on Γm, L( ~E, ~H) = L( ~Einc,
~Hinc) on Γa, (2)

where L( ~E, ~H) = ~n× ~E−

√

µ

ε
~n×( ~H×~n). Here ~n denotes the

unit outward normal to ∂Ω and ( ~Einc,
~Hinc) is a given incident

field. The first boundary condition is called metallic (referring

to a perfectly conducting surface) while the second condition

is called absorbing and takes here the form of the Silver-

Müller condition which is a first order approximation of the

exact absorbing boundary condition. This absorbing condition

is applied on Γa which represents an artificial truncation of

the computational domain.

B. Discretization in Space

We consider a partition Th of Ω into a set of tetrahedra τi
with boundary ∂τi. For each τi, ǫi and µi are respectively the

local electric permittivity and magnetic permeability of the

medium, which are assumed constant inside the element τi.
For two distinct tetrahedra τi and τk in Th, the intersection

τi ∩ τk is a triangle aik which we will call interface. For each

internal interface aik , we denote by ~nik the unitary normal

vector, oriented from τi to τk . Finally, we denote by Vi the set

of indices of the elements which are neighbors of τi (having

an interface in common). In the following, to simplify the

presentation, we set ~J = 0. For a given partition Th, we seek

approximate solutions to (1) in the finite dimensional subspace

Vpi
(Th) = {~v ∈ L2(Ω)3 : ~v|τi ∈ (Ppi

(τi))
3 ∀τi ∈ Th}

where Ppi
(τi) denotes the space of nodal polynomial functions

of degree at most pi inside the element τi. Following the

discontinuous Galerkin approach, the electric and magnetic

fields inside each finite element are seeked for as linear com-

binations (~Ei, ~Hi) of linearly independent basis vector fields

~ϕij , 1 ≤ j ≤ di, where di denotes the local number of degrees

of freedom inside τi. Let Pi = Span( ~ϕij , 1 ≤ j ≤ di).

The approximate fields (~Eh, ~Hh), defined by (∀i, ~Eh|τi =
~Ei, ~Hh|τi = ~Hi) are allowed to be completely discontin-

uous across element boundaries. For such a discontinuous

field ~Uh, we define its average {~Uh}ik through any internal

interface aik , as {~Uh}ik = (~Ui|aik
+ ~Uk|aik

)/2. Because of

this discontinuity, a global variational formulation cannot be

obtained. Instead, we dot-multiply (1) by a vector function

~ϕ ∈ Pi, integrate over each single element τi and integrate

by parts. Then, for integrals over ∂τi, a specific treatment

must be introduced since the approximate fields are discon-

tinuous through element faces, leading to the definition of a

numerical flux. We choose to use a fully centered numerical

flux, i.e. ∀i, ∀k ∈ Vi, ~E|aik
≃ {~Eh}ik, ~H|aik

≃ {~Hh}ik.

The metallic boundary condition (first relation of (2)) on a

boundary interface aik ∈ Γm (k in the element index of

the fictitious neighboring element) is dealt with weakly, in

the sense that traces of fictitious fields ~Ek and ~Hk are used

for the computation of numerical fluxes for the boundary

element τi. More precisely, we set ~Ek|aik
= −~Ei|aik

and
~Hk|aik

= ~Hi|aik
. Similary, the absorbing boundary condition

(second relation of (2)) is taken into account through the use

of a fully upwind numerical flux for the evaluation of the

corresponding boundary integral over aik ∈ Γa (see [9] for

more details). This yields:
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∫

τi

~ϕ · ǫi∂t~Ei =
1

2

∫

τi

(curl~ϕ · ~Hi + curl~Hi · ~ϕ)

−
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Hk × ~nik),

∫

τi

~ϕ · µi∂t ~Hi=−
1

2

∫

τi

(curl~ϕ · ~Ei + curl~Ei · ~ϕ)

+
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Ek × ~nik).

(3)

Eq. (3) can be rewritten in terms of scalar unknowns. Inside

each element, the fields are recomposed according to ~Ei =
∑

1≤j≤d

Eij ~ϕij and ~Hi =
∑

1≤j≤d

Hij ~ϕij and let us now denote

by Ei and Hi respectively the column vectors (Eil)1≤l≤d and

(Hil)1≤l≤d. Then, (3) is equivalent to:























M ǫ
i

dEi

dt
= KiHi −

∑

k∈Vi

SikHk,

Mµ
i

dHi

dt
= −KiEi +

∑

k∈Vi

SikEk,

(4)

where the symmetric positive definite mass matrices Mσ
i (σ

stands for ǫ or µ) are local (element-wise) mass matrices, Ki

is the local stiffness matrix and Sik are interface matrices.

C. Time Discretization

The semidiscrete system (4) is time integrated using a

second-order leap-frog scheme as:


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
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
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









M ǫ
i

(

E
n+1
i −E

n
i

∆t

)

= KiH
n+ 1

2

i −
∑

k∈Vi

SikH
n+ 1

2

k ,

Mµ
i

(

H
n+ 3

2

i −H
n+ 1

2

i

∆t

)

=−KiE
n+1
i +

∑

k∈Vi

SikE
n+1
k .

The resulting fully explicit DGTD-Ppi
method is analyzed

in [6] where it is shown that the method is non-dissipative,

conserves a discrete form of the electromagnetic energy and

is stable under a CFL-like.
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III. TETRAHEDRAL MESH BASED GEOMETRIC MODELS

OF HEAD TISSUES

The DGTD-Ppi
method described previously assumes that

the computational domain is discretized using tetrahedral

elements. In this study, we aim at exploiting this numerical

method for the calculation of the SAR induced in head

tissues. A first step is thus to construct compatible geometrical

models of the head tissues. The Visible Human project 1

aimed at the construction of complete, anatomically detailed,

three-dimensional representations of male and female human

bodies. Among other achievements, high resolution images of

representative male and female cadavers have been completed.

These image data sets are used for various research purposes

among which numerical dosimetry studies of human tissues

exposure to electromagnetic fields. As a matter of fact, the

Visible Human model is now used by several groups world-

wide involved in such studies.

Starting from magnetic resonance images of the Visible

Human 2.0 project [10], head tissues are segmented and the

interfaces of a selected number of tissues are triangulated.

Different strategies can be used in order to obtain a smooth and

accurate segmentation of head tissues and interface triangula-

tions as well. A first strategy consists in using a marching cube

algorithm [11] which leads to huge triangulations of interfaces

between segmented subdomains. These triangulations can then

be regularized, refined and decimated in order to obtain

reasonable surface meshes, for example using the YAMS [12]

re-meshing tool. Another strategy consists in using a variant

of Chew’s algorithm [13], based on Delaunay triangulation

restricted to the interface, which allows to control the size

and aspect ratio of interfacial triangles [14]. Example of

triangulations of the skin and the skull, are shown on Fig. 1.

Then, these triangulated surfaces together with a triangulation

of the artificial boundary (absorbing boundary) of the overall

computational domain are used as inputs for the generation

of volume meshes. Finally, the GHS3D tetrahedral mesh

generator [15] is used to mesh the volume domains between

the various interfaces. The exterior of the head must also be

meshed, up to a certain distance, where an artificial absorbing

boundary condition has to be set. Moreover, a simplified

mobile phone model (metallic box with a quarter-wave length

mounted on the top surface) is included and placed in vertical

position close to the right ear. Overall, the geometrical models

considered here consist of four tissues (skin, skull, CSF -

Cerebro Spinal Fluid and brain).

IV. NUMERICAL RESULTS

All the numerical experiments reported here are concerned

with the propagation of an electromagnetic wave emitted by

a dipolar source localized (and centered) between the lower

tip of the antenna and the top surface of the mettalic box,

and is modeled by a current of the form (~xd is the local-

ization point of the source) Jd
z (~x, t) = δ(~x − ~xd)f(t) where

f(t) is sinusoidally varying temporal signal with frequency

1http://www.nlm.nih.gov/research/visible/visible human.html
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Fig. 1: Surface meshes of the skin (top) and the skull (bottom).

F=1800 MHz. This source current is easily introduced and

discretized according to the discontinuous Galerkin formula-

tion discussed in subsection II-B. A discrete Fourier transform

of the components of the electric field is computed during the

last period of the simulation.

We consider a sequence of three meshes whose characteris-

tics are summarized in Table I. For these meshes, the artificial

boundary Γa is a spherical surface approximately located one

wavelength away from the skin. The tetrahedral meshes are

globally non-uniform and the quantities Lmin, Lmax and Lavg

in Table I respectively denote the minimum, maximum and

average length of mesh edges. Numerical simulations have

been performed for a duration of 5 periods of the source signal.

Contour lines of the local SAR normalized to the maximum

value of the local SAR one one hand, and of the local SAR

normalized to the total emitted power on the other hand, are

shown in Fig. 2 for the calculations based on mesh M3. Finally,

Table II summarizes the values of the local SAR normalized

to the total emitted power.

TABLE I: Characteristics of the tetrahedral meshes of head

tissues for calculations with the DGTD-Pp method.

Mesh # elements Lmin (mm) Lmax (mm) Lavg (mm)

M1 815,405 1.00 28.14 10.69
M2 1,862,136 0.65 23.81 6.89
M3 7,894,172 0.77 22.75 3.21

In the following, we consider that the approximate solution

computed with mesh M3 using the DGTD-P1 method defines a

reference solution. Patterns of the contour lines for calculations

respectively performed with mesh M1 using the DGTD-P3

method, with mesh M2 using the DGTD-P2 method on one

hand (not shown here), and with mesh M3 using the DGTD-

P1 method on the other hand, are very similar. In Table II,
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the quantity given parenthetically is the difference with the

reference value (i.e. the one associated to mesh M3 and the

DGTD-P1 method) and the corresponding error level. We note

here that the relative error tends to increase when switching

from p = 1 to p = 2 for a given discretization mesh. Again,

this should not be interpreted as a counter effect of an increase

of the approximation order since this relative error is evaluated

on the basis of a solution computed on the finest mesh which is

based on high resolution triangulations of the tissue interfaces

(see the figures in section III). Rather, we can surely conclude

that the discretization of the geometrical features of tissues

has a greater impact on accuracy than the interpolation order

in the DGTD-Pp method.

TABLE II: Calculations with the DGTD-Pp method. Maxi-

mum value of the normalized local SAR.

Mesh DGTD-P1

M1 3.365 W/Kg (0.463, 12.1 %)
M2 3.734 W/Kg (0.094, 2.4 %)
M3 3.828 W/Kg

Mesh DGTD-P2

M1 3.269 W/Kg (0.559, 14.6 %)
M2 3.586 W/Kg (0.242, 6.3 %)

Mesh DGTD-P3

M1 3.283 W/Kg (0.545, 12.3 %)
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Fig. 2: Calculations with the DGTD-P1 method. Mesh M3:

contour lines of local SAR over maximum local SAR in log

scale (top) and the normalized local SAR (bottom) in selected

cut planes).

We conclude this results section by summarizing in Table III

the computing times of the calculations reported here. Numeri-

cal simulations have been conducted on a Bull Novascale 3045

parallel system consisting of Intel Itanium 2/1.6 GHz nodes

interconnected by a high performance Infiniband network.

Each node consists of a 8 core board with 21 GB of shared

memory. The parallelization of the DGTD-Pp method relies

on a SPMD (Single Program Multiple Data) strategy which

combines a partitioning of the tetrahedral mesh with a message

passing programming using the MPI interface.

TABLE III: Calculations with the DGTD-Pp method. Com-

puting times (the quantity given parenthetically is the number

of processing units).

Mesh DGTD-P1 DGTD-P2 DGTD-P3

M1 570 s (128) 707 s (128) 1862 s (128)
M2 239 s (256) 1142 s (256) -
M3 761 s (512) -
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