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Abstract

This paper discusses isoparametric technique for handling curvilinear
geometries in high accuracy discontinuous Galerkin (DG) simulations for
time-domain Maxwell’s equations. With isoparametric elements, numer-
ical fluxes along curved boundaries are computed much more accurately
due to the high-order representation of the computational domain. Nu-
merical experiments for 2D propagation problems demonstrate the ap-
plicability and benefits of the isoparametric technique for simulations
involving curved domains.

Mathematics Subject Classification: 65M60, 65D30, 65D32, 78 A40

Keywords: Discontinuous Galerkin method, Maxwell’s equations, Numer-
ical integration, Isoparametric technique

1 Introduction

The relevance of an accurate representation of the domain and its boundary
has been pointed out by several authors, see |1, 8,9, 10] among others. In some
applications, such as compressible flow problems, if a discontinuous Galerkin
formulation is adopted, an important loss of accuracy is observed when a linear
approximation of the boundary is used, see [1]. Bassi and Rebay [1] showed
that, in the presence of curved boundaries, a meaningful high-order accurate
solution can only be obtained if the corresponding high-order approximation
of the geometry is employed (i.e. isoparametric finite elements). In fact, it
is necessary to take into account the boundary curvature effect in order to
have a consistent boundary discretization, see [10]. In [8] the same problem is
studied, and a new method is proposed for computing the flux across a curved
face. Using a parametrization of the curved boundary, the flux definition is
modified but the resulting method is, unfortunately, non-conservative.
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Maxwell equations are also very sensitive to the quality of the boundary
representation. However, most of the published works on the DG methods
for time-domain Maxwell’s equations make use of straight-sided elements to
approximate the geometry and do not include the study of the geometrical
error, see [4, 5, 6, 7| to name a few. The present work is in some sense comple-
mentary to the previous ones in that we consider isoparametric techniques for
domains with curved boundaries. In particular, we show that the DG method
is inaccurate for curved domains on the one hand, and that a higher-order
boundary representation introduces a dramatic improvement in the accuracy
of the numerical approximation on the other hand.

A broad outline of the paper follows. Section 2 recalls the system of
Maxwell equations and its DG discretization which is based on totally centered
numerical fluxes and a fourth-order leap-frog time scheme. The isoparamet-
ric triangular elements are described in Section 3, with special attention to
the interpolation and numerical integration in those elements with one curved
face. Section 4 presents numerical examples on curvilinear domains for 2D
propagation problems in homogeneous and heterogeneous media. The results
clearly demonstrate the role of the geometry approximation in the accuracy of
the high-order DG method.

2 Discontinuous Galerkin method

2.1 Continuous problem

We consider the time-domain Maxwell equations in two space dimensions for
heterogeneous linear media with no source. The electric field E(Z,¢) and the
magnetic field H(Z,t) verify:

) E = curlH, pdH = —curl E, (1)

where the symbol 0; denotes a time derivative. These equations are set on a
bounded domain  of R3. The electric permittivity tensor ¢(Z) and the mag-
netic permeability tensor p(Z) are time-invariant and both symmetric posi-
tive definite. Our goal is to solve system (1) in a domain  with boundary
00 =T,UT,,, where we impose the following boundary conditions:

ﬁXE:OonFm,
{ )

[:(E, IjI) — E(Einca I:’Iinc) on Faa

where £(E, H) = i x E+ cuit x (i x H). Here 7i denotes the unitary outwards
normal to 02, ¢ = 1/, /e is the speed of propagation and (Einc, ﬁinc) is a given
incident field. The first boundary condition is called metallic or PEC (referring
to a perfectly electrically conducting surface) while the second condition is
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called absorbing and takes here the form of the Silver-Miiller condition which
is a first-order approximation of the exact absorbing boundary condition. This
absorbing condition is applied on I', which represents an artificial truncation
of the computational domain. Finally, system (1) is supplemented with initial
conditions: Eo(Z) = E(Z,0) and Hy(Z) = H(Z,0).

2.2 Discretization in space

We consider a partition 7, of €2 into a set of straight-sided or curved triangles
7; of size h; with boundaries O7; such that h = max,, ez, h;. For each 7;, ¢; and
1; are respectively the piecewise constant electric permittivity and magnetic
permeability of the medium. For two distinct elements 7; and 7, in 75, the
(non-empty) intersection a;, = 7; N 7} is called an interface. For each internal
interface a;,, we denote by 77;, the unitary normal vector, oriented from 7; to
7. For boundary interfaces, the index k corresponds to a fictitious element
outside 2. Let F}. be the set of interior interfaces of 7y, ;" and F}* the sets of
metallic and absorbing boundary interfaces of 7;,, and let F), = Fj. U F" U F.
We denote by V; the set of indices of the elements which are neighbors of 7;
(having an interface in common). Let 7, be a fixed master triangle, we assume
that each 7, € 7}, is the image, under a bijective mapping V.., of the master
element 7., that is 7, = ¥, (7,.), Vr; € 7). Then, to each 7; € 7}, we assign a
non-negative integer p; that is the local interpolation degree and we collect the
pi and V. in the vectors p = {p; : 7; € 7,} and V), = {V,. : 7; € T, }. In the
following, for a given partition 7, and vectors p and ¥;, we seek approximate
solutions to Eq. (1) in the finite element space:

Vo(Tn,®)) = {@ € L*(Q)° : ugy,, 0 ¥, € Pp(7), for k=1,2,3, V1 € T},

where P, (7,) denotes the space of nodal polynomials of degree at most p;
inside the element 7,.

Following the discontinuous Galerkin approach, the electric and magnetic
fields inside each finite element are seeked for as linear combinations of linearly
independent basis vector fields F;;, 1 < j < d;, where d; = (p; + 1)(p; +2)/2
denotes the local number of degrees of freedom inside 7;: EZ = Ehm =
Zlgjgdi E;;@;; and H, = Ijlhm = Zlgjgdi H;;7;;. The approximate fields are
allowed to be discontinuous across element boundaries. For such a discontin-
uous field ﬁh, we define its average {ﬁh}zk through any internal interface a;p,
as {ﬁh}zk = (ﬁi\aik +I—jk|aik)/2' Dot-multiplying Eq. (1) by ¢ € Span(y;;, 1 <
j < d;), integrating over 7; and integrating by parts, yields:

J, @ @OE = [ enl H— [, & (Hx ),

) . . (3)
[, 6w =~ [ carlg Bt [, & (B ).
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In Eq. (3), we now replace the exact fields E and H by the approximate fields E;
and H; in order to evaluate volume integrals. For integrals over O7;, a specific
treatment must be introduced since the approximate fields are discontinuous
through element faces, leading to the definition of a numerical flux. We choose
to use a fully centered numerical flux, i.e., Vi,Vk € V;, EMM ~ {Eh}ik, ﬁ‘aik ~
{I—th}Z,C Evaluating the surface integrals in Eq. (3) using the centered numerical
flux, and re-integrating by parts yields:

fn‘ﬁ' eﬁtﬁi = %fn(curl@’- FIZ + curlﬁi - P) — %kz\; fam@’ (ﬁk X i),
eV

. . . . 4

fncﬁ- wioOH; = —%fn(curlaﬁ- E; + curlE; - &) + %,%; fak‘ﬁ (B X i) (4)
The metallic boundary condition on a boundary interface a;, € I'), (k in the
element index of the fictitious neighboring element) is dealt with weakly, in the
sense that traces of fictitious fields f}k and IjIk are used for the computation of
numerical fluxes for the boundary element 7;. More precisely, we set Eklaik =
—Ei‘aik and ﬁk‘aik = FI“C%. A similar approach is applied to the numerical
treatment of the absorbing boundary condition which is taken into account
through the use of a fully upwind numerical flux for the evaluation of the
corresponding boundary integral over a;;, € ', (see [5] for more details). Let us
denote by E; and H; respectively the column vectors (Ej;)1<i<q, and (Hj)1<i<d,-
Eq. (4) can be rewritten as:

5
M{OH; = —KE;+ ) Sk, ®)

where the symmetric positive definite mass matrices M7 (o stands for € or ),
the symmetric stiffness matrix K; (both of size d; x d;) and the d; x dj, interface
matrix S;, write:

(M)j = oi [ "Gy~ Fu, 1<5,1<d;,

(Ki)j = %fn " @ij - curlgy + '@y - curlgy, (6)
(Sa)t = 3 i "B (P x ), 1<j<d;, 1<1<dy.

2.3 Time discretization

The set of local system of ordinary differential equations for each 7;, Eq. (5),
can be formally transformed in a global system. To this end, we suppose
that all electric (resp. magnetic) unknowns are gathered in a column vector E
(resp. H) of size d, = S, d; where N, stands for the number of elements in
7h. Then system (5) can be rewritten as:

{ME&JE = KH - AH — BH + CgE,

7
MO,H = —KE + AE — BE + CyH, (7)
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where we have the following definitions and properties:

o M, M* and K are d, x d, block diagonal matrices with diagonal blocks
equal to M¢, M} and K; respectively. M€ and M* are symmetric positive
definite matrices, and K is a symmetric matrix.

e Ais also a dy x d4 block sparse matrix, whose non-zero blocks are equal
to Six when a;, € Fj. Since 7iy; = —7l;, it can be checked that (Sy); =
(Ski)i; and then Sy; = *Sy; thus A is a symmetric matrix.

e B is a d, x d; block diagonal matrix, whose non-zero blocks are equal
to Sy, when a;, € F'. In that case, (Si); = —(Sik)i;; thus B is a
skew-symmetric matrix.

o Cp and Cy are d; x d, block diagonal matrices associated to boundary
integral terms for a;;, € Fj.

Let S =K — A — B; the system (7) rewrites as:
MO,E = SH + CpE, M“8,H = — 'SE + CyH. (8)

The semidiscrete system (8) is advanced in time by using the explicit fourth-
order leap-frog (LF,4) scheme presented in [6]. Analysis of the stability and
convergence of the resulting DGTD-P,, method can also be found in [6].

3 Curvilinear elements

Consider a physical domain Q C R? whose boundary 952, or a portion of it,
is defined by regular parameterized curves. A regular partition of the do-
main () = U,.ez, 7i in triangles is assumed such that every interior element
7; (i.e., an element having at most one vertex on the curved boundary) has
only straight sides, and every curved element has at most one side, I';, on
the curved boundary. Each interior element can be defined and treated as
standard DG or FE elements, i.e., by using an affine mapping from a master
element 7, to a physical one. Therefore, in the vast majority of the domain,
interpolation and numerical integration are standard. All curved elements are
the images of 7, through isoparametric maps. This section is devoted to: (i)
the definition of isoparametric maps for curved elements, (ii) the definition
of a proper numerical integration scheme to evaluate the matrices in Eq. (6)
for each curved element, (iii) the geometric adaptation of a subset of element
edges to be conform to the curved boundary.

Given any curved triangle 7; € 7;, spanned by the three vertices, (vi, va, v3),
counted counter-clockwise in the Cartesian coordinates £ = (z,y). We as-
sume that 7; consists of two straight interior edges and one smooth parame-
terized curve I'; as shown on Fig. 1. This curve I'; interpolates three nodes for



948 H. Fahs

quadratic element and four nodes for cubic element. Let 7, = {({,n) € R? :
&,n>0,6+n <1} be a closed straight-sided master triangle with vertices
Aj, Ay and Az in € = (€, n) coordinates. In 7., there exist M,, = (n+1)(n+2)/2
fundamental nodal points, A;,i = 1,..., M, including the three vertices. Let
{LI" (€)}Mr be a set of real functions defined in 7, such that L™ (A4;) = &;;
(the Kronecker delta) for i,5 = 1,..., M,, and 3" L(n = 1. Then, the
curved triangle 7; is obtained as the image of 7. by the mapping (see Fig. 1)

S0
no2x=V,(§) = Z L (€)v; : 7 — R?, (9)

where v;,7 = 4, ..., M, are some nodal points defined in the curved element
7;. Here, n = 2 refers to quadratic map and n = 3 refers to cubic map. The
shape functions LE”) (€) are listed in the Appendix.

Let us denote by v;-v; a straight edge passing through the points v; and v;.
We shall assume that the nodes along vi-vo and vi-vs in Fig.1 are equally
distributed. The nodes v; (i = 5,6,7) are taken on I'; in such a way that v;-v}
is perpendicular to vo-vs, where vi (i = 5,6,7) are defined as in Fig. 1. Then,
Eq. (9) reduces to:

Un(€) = Vit (va—vi)E+ (vs = vi)n +alén
Hln = 3] Y aff (9)¢', 1<ij<n—1, (10)
7
1+j=n
where ¥ are nodal values defined on 7;, H[n — 3] is the well-known Heaviside
step function and the coefficients a@) (V) are given as:
* 3 * *
@i (7) = 4(vs = v3). - app (%) = 5(v = ¥§) + (v7 = v})).
as (V) = 7("6 —vg), ap (V) =3 5 (vr —vh),
The Jacobian matrix of the map V., is defined as Jy(§) = ‘g—? and its deter-

minant, denoted ||Jy]|, is a polynomial of degree 1 for quadratic map, and of
degree 4 for cubic map:
13w@) = X TG + Hin—3] 3 I @),

ij<1 i,5<2

i+ji=1
where the coefficients Ji(;z) (V) are listed in the Appendix. For sufficiently small
h, the mapping in Eq. (10) maps one-to-one the triangle 7, onto the triangle 7;
and ||Jy| is different from zero on 7, [11].
In order to evaluate lines integrals over the curved edge I';, we introduce the
following parameterization, ®r, : t € I,.; — R?, such that

vo(l —t) + vat + 4(vs — vi)(1 — t)t, for quadratic map,

Or, (1) = va(1l —t) + vat + 2(ve — vE)H(1 — 1) (2 — 3¢) (11)
+3(vy — vi)E(1 — £)(3t — 1), for cubic map,



DGTD method for Maxwell on curvilinear domains 949

where L.y = [0,1] as in Fig. 1. We will assume that the restriction of ®r, to
(—1,1) is an immersion.

A501) V3

Eny—=xy) 2FEN)
— =

A0 V2)

@)

n

A0 A20  AMLO Y Iret .
e X 0 12 1

AL01) \ V3
&mn—0y) APEN) I
—~ e - -
g X
5 Ve
@ (W3, 13)
= ° &L? \,
Q'Ag Ao 7 S ) 6
Tr Vo
N e v, 1Y V2
00) (U300 (230 1,0 4 |
\ G9 wzo @0 4o v [ ref .
12 X 0 U3 23 1

(b) Cubic map

Figure 1: Mapping VU,, in Eq.(9) from the master triangle 7, onto a curved
triangle 7; and immersion ®r, in Eq. (11) that parameterizes the curved edge
[';. In fig:map-a, vi=(ve + v3)/2, while vi=(2vy + v3)/3 and vi=(vs + 2v3)/3
in fig:map-b.

The weak form to be solved requires the evaluation of the matrices in
Eq. (6). These matrices involve integrations along element edges and in the
element interiors. All integrals in elements not having an edge along the curved
boundary are computed using standard procedures, i.e., by using an affine
mapping from the master element to the physical element. Since the Jacobian
of the affine mapping is constant, the matrices in Eq. (6) can be precomputed
and stored for the master element in advance of the main calculation once and
for all. Elements with one edge, I';, on the curved boundary require special
attention since the matrices in Eq. (6) should be computed and stored for each
curved element. Two cases must be considered: line integrals (usually related
to the implementation of natural boundary conditions or to flux evaluation in
the DG context) and volume integrals (standard integrals in the element 7;).
All line and element integrals to be computed on a curved element 7; with one
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curved edge I'; = @, (I,f), can be expressed as

Line integrals : AK :/ f(z) dz :/I gl Ja @)l dt,
FZ' ref

Element integrals : Z7 = / f(z) dz :/ 9@ Jw (&) dE,

Tr

(12)

where f and g are two Lagrange polynomials defined respectively in 7; and 7,
such that f = go W', g is the restriction of g to L.s, and ||.Js(t)| denotes
the norm of the differential of the parametrization ®r, (which, in general, is
not a polynomial). Efficient cubature formulas are used for the numerical
computation of the integrals in Eq. (12), namely

Nip

TN ~ ;g(/\i)HJCD(/\i)HWi and 77 ~ ;g()\i)HJ\y(/\i)Hwi, (13)

where )\; and w; are, respectively, the coordinates and weights of the n;, inte-
gration points in I,y or in 7,. A Gauss-Legendre quadrature is chosen for line
integrals, while for element integrals we use the symmetric Dunavant cubature
formulas, see [3]. Table 1 gives the number of cubature points n;,, the CPU
time and the memory overhead per element for computing and storing the
matrices in Eq. (6) including the inverse of the mass matrix.

Quadratic map Cubic map
Di CPU RAM Nip Nip CPU RAM Nip Nip
inl. inm7 inl. inm
1 3.28 0.46 2 4 5.27 0.62 4 12
2 19.7 1.61 3 7 30.6 1.78 5 16
3 75.1 4.25 4 13 114.3 4.48 6 25
4 216.9 9.25 5 19 306.5 9.52 7 33

Table 1: The number of cubature points n;,, the CPU time (in microseconds)
and the memory overhead (in KB) per element for computing and storing the
matrices in Eq. (6) including the inverse of the mass matrix.

Once the local matrices are computed for every curved element, we are now
in the position to discuss how to adjust a subset of element edges so that they
approximately conform to the curved boundary, see Fig. 2. First, we make sure
that vertices of these edges do in fact lie on the desired curve. Next, we adjust
the interior nodes of each edge to be curved. Then, we compute the warp this
induces for each interior node on the edges to be curved. Finally, we blend
this deformation into the interior so that the deformation is zero on the other
two edges of each triangle.
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Figure 2: Sixth-order nodal distributions in the straight sided triangle (left),
adapted to the curved edge (center), and adapted to the curved triangle (right).

4 Numerical experiments

The application of the proposed methodology is illustrated by considering the
numerical solution of the two-dimensional Maxwell equations in the TM po-
larization, i.e., we solve for (H,, H,, E.). In the following, we consider the case
where the local interpolation degree p; is uniform in all element of the mesh,
i.e., p; = p, and the discontinuous Galerkin scheme presented in Section 2 is
referred to as DGTD-P,. All simulations were performed on a Dell Precision
M90 workstation equipped with an Intel Core 2 CPU 2.16 GHz processor and
2 GB of RAM memory.

Example 1: Wedge-shaped PEC resonator. We consider a computa-
tional domain which is bounded by the curves y=tan(3w/7)z, 2 + y*=1/4
and the z-axis (see Fig.3). The boundaries of the sector are assumed to be
perfectly conducting and the material is taken to be the vacuum, i.e., e=p—1
in normalized units. The exact time-domain solution is

E, = J,(wr)sin(vl) cos(wt),

where w=16.75883874736728 (i.e., the frequency F=800 MHz) and v=14/3 are
obtained by enforcing the PEC condition on the boundaries. Using Maxwell’s
equations, one can then recover the solutions for the magnetic field compo-
nents.

In order to check the accuracy and the convergence properties of the pro-
posed methodology we present computations with polynomial interpolation up
to degree p = 4 and with affine, quadratic, and cubic mapping from the mas-
ter element to the real curved elements. The various computations have been
performed on four successively refined non-uniform grids whose characteristics
are summarized in Table 2. Fig. 4 shows the convergence graphs as a function
of the square root of the total number of degrees of freedom (#DOF). The
convergence rates obtained by the affine map are bounded by 2, while those
obtained by the quadratic and cubic maps are bounded by 3 and 4 respectively.
Moreover, we observe from Fig. 4 that the affine map becomes less efficient in
terms of #DOF as the order of approximation p increases. It is clear that
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the solution accuracy for high degree p is limited by the geometrical error,
and that the geometrical error converges at about the same rate as the field
error of linear element (i.e., p=1). By comparing all graphs in Fig. 4, one can
notice that to achieve a given accuracy, the quadratic and cubic maps require
less #DOF than the affine map. For instance, for an accuracy of 1073, the
quadratic and cubic maps can save around 50% to 90% of #DOF. Fig. 5 shows
the time evolution of the L? errors during 26 periods using the mesh M3 in
Table2. The errors and the corresponding p-convergence rates are given in
Table3. The affine map leads to zeroth-order accuracy for p > 2, while the
quadratic and cubic maps achieve exponential convergence. Moreover, for a
same mesh and order of interpolation, the errors obtained by the high-order
maps are between two to four order of magnitude than those obtained by the
affine map. Finally, the contour lines of the £, component are shown on Fig. 6.

EY 7x

V3

Figure 3: Example 1: problem setup (left) and computational mesh M3 (right).

Mesh M1 M2 M3 M4
# nodes 31 89 295 1067
# interior elements 40 140 520 2000
# curved elements 4 7 13 25

Table 2: Characteristics of grids used for the wedge-shaped resonator.

Affine map Quadratic map Cubic map
D Error r(p) Error r(p) Error r(p)
1 7.78E-02 - 6.83E-02 - 6.23E-02 -
2 1.12E-02  2.79 3.74E-04 7.51 291E-04 7.74
3 1.11E-02  0.02 1.13E-05  8.63 5.98E-06  9.58
4 1.11E-02  0.00 748E-07  9.43 3.11E-07  10.28

Table 3: Example 1: L? errors after 26 periods and convergence rates r(p) for
p-refinement.
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Figure 4: Example 1: h-convergence of the DGTD-P, method. L? error after
2 periods as a function of the square root of #DOF.

T T T T T T T le-01 T T T T T T T le-01 T
DGTDE: DGTD: DGTD:
1e-02 le-02 le-02
1603 Y 1003 1003
~ GTD-P2, P3, P4 R . 2 EW'P ) R S6TDR2
z Iz R R G T LA T A I I J v
U oo U je0s H{\HUH\‘H A ALY ' U en {\ﬁ(\q’v\ﬂ.nquU,w\mwnuwww.wwv‘w L
s s s
g g DGTDP3 g .
T le0s G le0s G le0s DOTo TS
3 s s UL
1006 1006 DeTR-R4 1006
DGTD-P4
1007 1007 1007
o Affine map o Quadratic map o Cubic map
1 ! . . . . o ! . . . . o ! . . . .
0 5e09 1e08 15008 2008 25008 308 35e08 0 5009 1e08 15008 2008 25008 308 35008 0 5009 1e08 15008 2008 25008 308 35008
time (in seconds) time (in seconds) time (in seconds)

Figure 5: Example 1: Time evolution of the L? error during 26 periods.

(a) Exact solution (b) Affine map (¢) Quadratic map

Figure 6: Example 1: Contour lines of E, after 26 periods for p = 2.

Example 2: Scattering of a plane wave by a dielectric cylinder. We
present here results for more realistic problem, in which a plane wave with
frequency F=300 MHz impinges on a dielectric cylinder, experiencing reflec-
tion and refraction at the material interface. The geometry of the scenario
is shown on Fig.7. This test problem has been considered in several works
such as [2, 5| where the expression of the analytical solution is detailed. In the
following, we set p;=ps=€;=1, i.e., the material is non-magnetic, and the ma-
terial exterior to the cylinder is assumed to be vacuum. The internal cylinder
has a radius r=0.6 m and bounds a material with relative permittivity e;=8.0.
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The computational domain €2 is bounded by a square of side length a—=3.2m
centered at (0,0). A first order Silver-Miiller absorbing condition is applied
on the boundary of the square. A non-uniform mesh is used which consists of
2714 vertices, 5154 internal elements, and 112 curved elements on the bound-
ary of the cylinder (see Fig.7). The physical simulation time has been set to
10 periods of the incident wave. Table4 gives the L? errors at the final time
and the corresponding p-convergence rates. Contour lines of E, and H, for
solutions resulting from the affine and cubic maps are shown on Fig.8 using
the DGTD-P; method. On Fig.9 we compare the x-wise distributions for y=0
of the real part of the discrete Fourier transform of £, and H, for the approx-
imate solutions obtained using the affine, quadratic and cubic maps. Similar
to the previous example, the affine map leads to large errors that arise in the
curved boundary and pollute the solution inside the domain, which render the
use of higher-order DG method useless. Table4 and Figs. 8-9 confirm that the
high-order maps provide more accurate results with errors differing by one to

four orders in magnitude.

4

Figure 7: Example 2: problem setup (left) and computational mesh (right).

X

H. Fahs

s
4%

7

J

AV AVAYAVAATATATAYAAAYA
PEER008
RS ORD)
vay ‘

(81 7”’1) 15}

';:;:0

A e AT ATAVAVA VL Lra
A ATATavavavy e
KR OO
RRReod é

KX

ivvi

YR
AR
-

s
v
i

X

oAy

o

SN
S

2
o Sesaravavavavy
B
008
K5

YAVAY
08
iy
20
§%

O
:

XX

20

%
O

5
X
X5
v
5
i
0
X

R
o
¢
Y

i

s
O
BRI %
%)
Vv,

N
")
6

Mg

%
s
X
=
o
vy

v
%
i

2
s

Koy

N

CROREE

5] BB
15 RRESEEERIRRT

e

TR
sy,
)

AYAY
V% AV
PRES
K
550
5
X
%
2

”
AY)
4
X
é

%
&

S—
LR
R

FEEREER

K

a5 ::;@ﬁ

X
2%
5
Y

s

2
P
e

WK

”‘;ﬁv o

%
AV
5

P
&

¥
vary

%

4.

:
:
L
e

o
o

e
2
o
AT
KK

o
%
o
NN
AV%VA
5

R

%

S
SO
LR

SIS
XX

0
s

o

V#V
2o

ol
*f
S8

0

Tarara

205

OO
s
&

V%
X
o
OB
TAVaVav,;
3

R
BRXY
:Ie"a

o
vavs
TS

5
X%

i

i

g
SRR
L
g 4% AVAS JaVA¥
S
RRRRIR

o
vy

<
R

S
R

zg

S
OPOREEN
RIOORRAREK

0t
L
KRR

7
A

PROS
VATV TAAVAY. s

<]
<l

D
K

Vs

0 05 1

Affine map Quadratic map Cubic map
D Error r(p) Error r(p) Error r(p)
1 8.48E-01 - 6.67E-01 - 5.73E-01 -
2 2.17E-01  1.97 2.09E-02 4.99 1.09E-02  5.16
3 7.70E-02  2.55 1.46E-03  6.56 1.09E-03  6.62
4 0.27E-02 1.31 1.87E-04 7.14 1.33E-04 7.31

Table 4: Example 2: L? errors after 10 periods and convergence rates r(p) for

p-refinement.
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(c) Hy - Affine map (d) Hy - Cubic map

Figure 8: Example 2: Contour lines of E, (top) and H, (bottom) after 10
periods for p = 2.
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Figure 9: Example 2: z-wise 1D distribution of the solution for p = 2.
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5 Concluding remarks

[soparametric technique combined with a high-order DG formulation is pro-
posed for the numerical solution of the Maxwell equations. Two numerical
examples are considered to evaluate the accuracy and the efficiency of the pro-
posed methodology. As expected, the results clearly show that the use of linear
geometric approximation lead to large errors, even if the mesh is drastically
refined near curved boundaries. It was also shown that the high-order rep-
resentation of the curved domain and the proper imposition of the boundary
conditions improve dramatically the accuracy of the DG method. Moreover,
under p-refinement, exponential convergence is achieved with quadratic and
cubic geometric approximation while the linear approximation leads to zeroth-
order accuracy. The extra cost of the isoparametric DG method, due to the
numerical integration over elements along the curved boundary, is alleviated
by the important saving in the number of degrees of freedom.

Appendix

Shape functions on 7,: The shape functions defined on 7, can be expressed
in function of the barycentric coordinates \y =1 —& —n, Ay =& and A3 = 1.

Quadratic case: The shape functions LZ@) (&), i=1,...,6 are:
LY = X(2) —j) =123,
(

L42) =4\ Ao, L?) = 44X A3, L£32) =41 As.

Cubic case: The shape functions LES) &), i=1,...,10 are:

=~

= INBA - 1DBN -2) j=1,2.3,

P =nEn 1), L =5nAEx - 1),
& =508 — 1), LY = 50aX5(30 — 1),
& = 5aBr — 1), LY = 30BN - 1),

L3 = 27X M.

SHSES

Determinant of the Jacobian: Let wy; € R? and w, € R? be the two rows
of a matrix W. We denote by D(wy,ws) the determinant of W. We also

denote by ei,j =V; — Vj7 and e’i,i* =v; — VZ' .

Quadratic case: The coefficients Ji(f) are :

J(%) = D(€2,1:€3,1), Jfg) = D(€2,1, 65,5*)7 Jéf) = D(€5,5*,€3,1)-
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Cubic case: The coeflicients Ji(;’) are :

I =Dlesres), I = —HIa+ L), I = $(Ls+ L)

I —27(Ly — Ly),  JE = 2L, J9 =z,

T = D(erzm con), i3 = 57 -yl
where

L, = D(e2,1: 66,6*): Ly, = D(e2,1: 67,7*), Ly = D(€3,1, 66,6*): L, = D(€3,1, 67,7*)-
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