
Author's personal copy

Investigation on polynomial integrators for time-domain
electromagnetics using a high-order discontinuous Galerkin method

H. Fahs 1

XLIM Institute, OSA Department, UMR CNRS 6172, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France

a r t i c l e i n f o

Article history:
Received 25 May 2011
Received in revised form 18 December 2011
Accepted 21 December 2011
Available online 9 January 2012

Keywords:
Maxwell’s equations
Discontinuous Galerkin method
Time-stepping schemes
Faber polynomials

a b s t r a c t

In this work, we investigate the application of polynomial integrators in a high-order dis-
continuous Galerkin method for solving the time-domain Maxwell equations. After the
spatial discretization, we obtain a time-continuous system of ordinary differential equa-
tions of the form, @tYðtÞ ¼ HYðtÞ, where YðtÞ is the electromagnetic field, H is a matrix
containing the spatial derivatives, and t is the time variable. The formal solution is written
as the exponential evolution operator, expðtHÞ, acting on a vector representing the initial
condition of the electromagnetic field. The polynomial integrators are based on the approx-
imation of expðtHÞ by an expansion of the form

P1
m¼0gmðtÞPmðHÞ, where gmðtÞ is a function

of time and PmðHÞ is a polynomial of order m satisfying a short recursion. We introduce a
general family of expansions of expðtHÞ based on Faber polynomials. This family of expan-
sions is suitable for non-Hermitian matrices, and consequently the proposed integrators
can handle absorbing media and conductive materials. We discuss the efficient implemen-
tation of this technique, and based on some test problems, we compare the virtues and
shortcomings of the algorithm. We also demonstrate how this scheme provides an efficient
alternative to standard explicit integrators.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, a variety of methods exist for the numerical treatment of the time-domain Maxwell equations, ranging from
the well established and still prominent FDTD methods based on Yee’s scheme [1], to the more recent finite element time
domain (FETD) [2], and discontinuous Galerkin time domain (DGTD) methods [3]. The use of unstructured meshes is an
intrinsic feature of the latter methods which can easily deal with complex geometries and heterogeneous propagation
media. In this paper we are interested in discontinuous Galerkin (DG) methods which are a class of finite element methods
(FE) based on completely discontinuous piecewise polynomial spaces for the numerical solution and the test functions. For
the same order of accuracy, DG methods require more degrees of freedom than continuous FE methods. To obtain highly
accurate and stable DG methods, suitable numerical fluxes need to be designed over elemental interfaces. The construction
of such numerical fluxes can be done in many different ways that are closely related to the particular equations [4]. The DG
method has become very popular in recent years for solving electromagnetic (EM) wave propagation problems [5]. It has
several distinct advantages. We refer to the lecture notes [6] and the textbook [3] for details and history of the DG method.
In particular, the DG method is flexible with regards to the choice of the time-stepping scheme. One may combine the DG
spatial discretization with any explicit [7] or implicit [8] time schemes, or even a blending between these two schemes [9],
provided that the resulting scheme will be stable.
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The DGTD methods for Maxwell’s equations are derived in two stages. First, the spatial operators are discretized on an
appropriate mesh covering the spatial domain, together with the accompanying boundary conditions. This leads to a
time-continuous, semi discrete problem in the form of an initial-value problem for a system of first-order ordinary differen-
tial equations (ODEs), see Section 3,

@tYðtÞ ¼ HYðtÞ; ð1Þ

where YðtÞ is the EM field and H is a real time-independent matrix arising from the DG discretization and depends on the
spatial configuration, material parameters and boundary conditions. Second, a numerical integration method for this ODE
system is chosen, which turns the semi-discrete solution into the desired fully discrete solution on the chosen space–time
grid. In this paper we focus on the second numerical integration stage, as in [10,9]. The solution of Eq. (1) can be formally
written as YðtÞ ¼ UðtÞYð0Þ, where Yð0Þ represents the initial state of the EM field and UðtÞ ¼ expðtHÞ is the time evolution
operator. The construction of high-order time integrators for problems of type Eq. (1) is usually based on an approximation of
the operator UðtÞ. These methods employ various algorithms to compute an exponential and other functions of the matrixH.
Most frequently, these algorithms are based on Taylor or Padé expansions. Although in principle these expansions are
convergent, in practice they are very inaccurate when ktHk is large [11]. Other integration schemes use the Suzuki product
formula or the split operator (SPO) method [12] which facilitates the implementation of higher-order accurate schemes with
very low dispersion even for large time steps. Although these schemes are unconditionally stable, they rely on rewriting
Maxwell’s equations as an operator-equation with a strictly skew-symmetric matrix H and, therefore, are not convenient
for absorbing or dispersive media. A more general approach to approximating an exponential or other functions of a large
matrix comes from computational linear algebra. van der Vorst [13] was amongst the first to be aware of the potential of
using established methods, such as the Lanczos or Arnoldi algorithms. For Hermitian matrices, the Krylov-subspace tech-
nique based on the Arnoldi process is highly accurate and efficient. Min and Fischer [14] applied the Krylov algorithm to
a spectral-element DG method for Maxwell’s equations and very accurate results were obtained compared to a fourth-order
Runge–Kutta method. For non-Hermitian matrices, the Krylov technique is usually combined with the SPO method in order
to treat absorbing media. While the unconditional stability is maintained, the accuracy is limited by the accuracy of the SPO
approximation rather than by the dimension of the Krylov space, see [15] for a recent discussion on this issue.

Another class for calculating the operator UðtÞ for large matrix H consists to expand it in the form UðtÞ ¼
P1

m¼0gmðtÞ
PmðHÞ, where gmðtÞ is a function of time and PmðHÞ is a polynomial of order m. This class will be referred to as polynomial
expansion method (PEM) which is the subject of this paper. The PEM has been widely used in the calculation of dynamics
and/or spectral properties of large quantum systems with great success [16–18]. In 1984 Tal-Ezer and Kosloff [16] proposed
an expansion in terms of first-kind Chebyshev polynomials (CH-scheme) for solving the Shrödinger wave equation in one
and two dimensions. The authors tested the method with the simple harmonic oscillator and the problem of scattering from
a metal surface; very accurate results were obtained with an efficiency six times higher compared to the conventional
scheme. A detailed comparison of the CH-scheme with various propagation schemes, was performed by Leforestier et al.
[17] who showed that the CH-scheme offers an accurate and flexible alternative to other existing techniques for propagating
the time-dependent Shrödinger equation. Since Maxwell’s equations can be cast in the form of the Schrödinger equation, it is
then natural to extend time-domain methods of quantum mechanics to numerical electrodynamics. For instance, the CH-
scheme has been recently applied to electromagnetic [19], seismic [20] and acoustic [21] wave propagations in the context
of FDTD methods; very accurate results were obtained for long time simulations compared to the Yee’s algorithm and the
SPO algorithm. While the CH-scheme is the most frequently used method, other expansions based on Legendre polynomials
have also been introduced to study dynamics of large quantum systems [18]. These expansions provide similar accuracy
compared to the CH-scheme. However, all PEMs cited above are consequently suited for Hermitian matrices, i.e., with real
or purely imaginary eigenvalues. For non-Hermitian matrices, when the spectrum is defined in the complex plane, the Faber
polynomials are more appropriate, and their use has been proposed by Moret and Novati [22]. The Faber approximation
method has been applied to quantum scattering problems [23] to compute the causal Green’s function for the Schrödinger
equation. The Faber polynomial approximation of the exponential of a non-Hermitian operator has also been used to solve
the initial value problem in electrodynamics of passive media [24] and for the Liouville-von Neumann equation that de-
scribes the time evolution of the density matrix in statistical systems [25,26]. As mentioned above, PEM has been extensively
used in quantum electrodynamics, but to our knowledge, it has never been used for integrating the Maxwell equations using
a DG method. This is the main topic of this paper.

The main purpose of this paper is to investigate the capabilities of PEM as a time-integration scheme for solving the time-
dependent Maxwell equations with a high-order DG method. Below we will (i) describe the ideas behind constructing
polynomial integrators, (ii) introduce a general family of integrators based on Faber polynomial expansions, (iii) discuss
the efficient implementation of this technique, and (iv) based on some test problems, compare the virtues and shortcomings
of the algorithm and provide guidance as to what computational savings one can expect compared to standard explicit meth-
ods. The rest of the paper is organized as follows. Section 2 recalls the Maxwell system and its DG discretization. In Section 3,
we show that the solution of the Maxwell equations can be written in the form of Eq. (1). In this section we also give the basic
idea of the polynomial expansion approach for the approximation of the time evolution operator. In Section 4, we construct
expansions based on Faber polynomials that are able to treat absorbing media and conductive materials. Then, in Section 5,
we present numerical results for several test cases. Finally, Section 6 contains a few concluding remarks and ideas for future
works.
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2. Governing equations and spatial discretization

The evolution of a time-dependent electromagnetic field Eðx; tÞ; Hðx; tÞ propagating through a linear isotropic medium is
determined by Maxwell’s equations

e@tE ¼ �rE þr� H; l@tH ¼ �r� E; ð2Þ

where eðxÞ; lðxÞ and rðxÞ are respectively the permittivity, the permeability and the conductivity of the medium. These
equations are set and solved on a bounded open domain X of Rd; d P 1. On the boundary @X ¼ Ca [ Cm, we impose the fol-
lowing boundary conditions: a perfect electric conductor (PEC) condition: n� E ¼ 0 on Cm and/or a Silver-Müller absorbing
condition: LðE;HÞ ¼ LðEinc; HincÞ on Ca where LðE;HÞ ¼ n� E þ cln� ðn�HÞ. Here n denotes the unit outward normal to
@X; c ¼ 1=

ffiffiffiffiffiffielp is the speed of propagation and ðEinc;HincÞ is a given incident field.
We shall now discretize Maxwell’s equations in space using the central DG method [10]. First, we consider a regular or

r-irregular partition T h of X into a collection of non-overlapping d-simplices or elements si. Thus a ðd� 1Þ-dimensional face
of each element si in T h is allowed to contain at most r hanging (irregular) nodes. We shall suppose that the family of par-
titions T h is shape-regular and that each si 2 T h is the image, under a smooth bijective map Wsi

, of a fixed master element sr;
that is, si ¼ Wsi

ðsrÞ for all si 2 T h, where sr is the open unit simplex in Rd. Within this construction we allow for elements si

with curved edges or faces. For an integer p P 1, we denote by ½PpðsrÞ�d the space of d-dimensional nodal polynomials of
degree at most p on sr . The dimension Nðp; dÞ of this space depends on the order p and on the spatial dimension d and is
given by Nðp; dÞ ¼ ðpþ dÞ!=p!d!. Then, to each si 2 T h we assign an integer pi P 1 that is the local polynomial degree inside
si; collecting the pi and Wsi

in the vectors p ¼ fpi : si 2 T hg and W ¼ fWsi
: si 2 T hg, respectively, we seek approximate solu-

tions to Eq. (2) in the finite element space

VpðX; T h;WÞ ¼ fu 2 ½L2ðXÞ�d : uk jsi
�Wsi

2 ½Ppi
ðsrÞ�d; k ¼ 1; . . . ;d;8si 2 T hg;

where ½L2ðXÞ�d is the space of square integrable functions on X. For each element si, the parameters ei;li and ri denote
respectively the local permittivity, permeability and conductivity of the medium, which are assumed constant inside the ele-
ment si. For two distinct elements si and sk in T h, the intersection aik ¼ si \ sk is a ðd� 1Þ-dimensional face in T h (a convex
polyhedron), with unitary normal vector nik, oriented from si towards sk. For the boundary faces, the index k corresponds to a
fictitious element outside the domain. Finally, we denote by F int;Fm and F a the union of all interior, metallic and absorbing
faces of T h, respectively, and set F ¼ F int [ Fm [ F a.

Following the DG approach, the electric and magnetic fields are approximated inside each finite element si by a linear
combination of basis functions uijðxÞ with support si and with time-dependent coefficient functions EijðtÞ and HijðtÞ as
follows

Ei ¼
X

16j6Ni

EijðtÞuijðxÞ; Hi ¼
X

16j6Ni

HijðtÞuijðxÞ: ð3Þ

Here, the index j indicates the jth basis function and Ni ¼ Nðpi; dÞ denotes the local number of degrees of freedom inside si. As
usual for DG schemes, the Maxwell system, Eq. (2), is multiplied by a test function u 2 spanfuij; 1 6 j 6 Nig and integrated
over each single element si. After integration by parts, inserting the DG approximation, Eq. (3), and after applying a centered
numerical flux in the boundary integrals, the semi-discrete formulation of the scheme in the physical element si reads as
[10] Z

si

u � ei@tEi ¼ �
Z

si

u � riEi þ
1
2

Z
si

ðr �u � Hi þr� Hi �uÞ �
1
2

X
aik2F

Z
aik

u � ðHk � nikÞ;
Z

si

u � li@tHi ¼ �
1
2

Z
si

ðr �u � Ei þr� Ei �uÞ þ
1
2

X
aik2F

Z
aik

u � ðEk � nikÞ:
ð4Þ

The boundary conditions are dealt with weakly, in the sense that the traces on aik of fictitious fields Ek and Hk are used for the
computation of numerical fluxes in Eq. (4) for the boundary element si. More precisely, for aik 2 Cm we set Ek ¼ �Ei and
Hk ¼ Hi. Concerning absorbing faces aik 2 Ca, we propose the fictitious fields Ek ¼ cieiðnik � EiÞ and symmetrically Hk ¼
�ciliðnik �HiÞ, where ci ¼ 1=

ffiffiffiffiffiffiffiffieili
p

. These values correspond to upwind fluxes at the absorbing boundary, based on the
hyperbolic nature of the Maxwell system. Eq. (4) can be rewritten in terms of scalar unknowns inside each element si.
We now denote by �Ei and �Hi, respectively, the column vectors ðEijÞ16j6Ni

and ðHijÞ16j6Ni
. Then, Eq. (4) is equivalent to

Me
i @t

�Ei ¼ �Mr
i

�Ei þ Ki
�Hi �

X
aik2F int

Sik
�Hk �

X
aik2Fm

Sik
�Hi þ

X
aik2Fa

Se
ik

�Ei;

Ml
i @t

�Hi ¼ �Ki
�Ei þ

X
aik2F int

Sik
�Ek �

X
aik2Fm

Sik
�Ei þ

X
aik2Fa

Sl
ik

�Hi;
ð5Þ

where the mass matrices M,
i (, stands for e or, l or, r), the stiffness matrix Ki (all of size Ni � Ni) and the Ni � Nk flux matri-

ces Sik and Sj
ik (j stands for e or l) are given by
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ðM,
i Þjl ¼ ,i

Z
si

uij �uil; ðKiÞjl ¼
1
2

Z
si

uij � r �uil þuil � r �uij;

ðSikÞjl ¼
1
2

Z
aik

uij � ðukl � nikÞ; ðSj
ikÞjl ¼

1
2

ciji

Z
aik

ðuij � nikÞ � ðukl � nikÞ:
ð6Þ

These matrices are evaluated by a numerical integration scheme based on a family of high-order cubature formulas for line,
surface, and volume integrals. For complete details on this issue, see [10,27].

3. Polynomial integrators applied to discrete Maxwell’s equations

In some cases, the discretization of Maxwell’s equations actually leads to a Hamiltonian system of ODEs: it is indeed the
case for some FDTD methods [19], more generally for FETD methods [28], and also for the case considered here: DGTD meth-
ods with totally centered fluxes. In this section, we will describe the main idea behind the polynomial integrators and will
explain how to apply them to the Hamiltonian form of the discretized Maxwell equations.

The set of local system of ODEs for each si, Eq. (5), can be formally transformed in a global system. To this end, we suppose
that all electric (resp. magnetic) unknowns are gathered in a column vector E (resp. H) of size Ng ¼

Pne
i¼1Ni where ne stands

for the number of elements in T h. Then system (5) can be rewritten as

Me@tE ¼ �MrEþKH�AH� BHþ CeE;

Ml@tH ¼ �KEþAE� BEþ ClH;
ð7Þ

where we have used the following definitions and properties: (a) Me;Ml;Mr and K are Ng � Ng block diagonal matrices with
diagonal blocks equal to Me

i ; Ml
i ; Mr

i and Ki respectively. Me; Ml and Mr are symmetric positive definite matrices, and K is
a symmetric matrix; (b) A is also a Ng � Ng symmetric block sparse matrix, whose non-zero blocks are equal to Sik when
aik 2 F int; (c) B is a Ng � Ng skew-symmetric block diagonal matrix, whose non-zero blocks are equal to Sik when
aik 2 Fm; and (d) Ce and Cl are Ng � Ng symmetric block diagonal matrices, whose non-zero blocks are equal to Se

ik and
Sl

ik respectively, when aik 2 F a. Let S ¼ K�A� B; the system (7) rewrites as

@t
MeE

MlH

� �
¼

Ce �Mr S

�Sy Cl

� �
E

H

� �
; ð8Þ

where the dagger symbol stands for the conjugate transpose. Introducing the scaled fields ~E ¼M1=2
e E; ~H ¼M1=2

l H, and writ-
ing Y ¼ ð~E; ~HÞy, Eq. (8) reads as

@tYðtÞ ¼ HYðtÞ; with H ¼
~Ce;r ~S

�~Sy ~Cl

 !
; ð9Þ

where ~S ¼M�1=2
e SM�1=2

l ; ~Ce;r ¼M�1=2
e ðCe �MrÞM�1=2

e ; ~Cl ¼M�1=2
l ClM�1=2

l , and the 2Ng � 2Ng matrix H depends only on
the spatial configuration. Eq. (9) is called the Hamiltonian form of the Maxwell equations, where H is the matrix Hamilto-
nian. For non-absorbing media and/or non-conducting materials ðr ¼ 0Þ, the matrix H is skew-symmetric, otherwise, it is
unsymmetric. The formal solution of Eq. (9) is given by

YðtÞ ¼ expðtHÞYð0Þ � UðtÞYð0Þ; ð10Þ

where Yð0Þ represents the initial state of the EM field and the operator UðtÞ ¼ expðtHÞ determines its time evolution matrix.
We consider to solve Eq. (10) on a discrete time grid ftn ¼ ns;n ¼ 0;1; . . .g, where s is the fixed time step, and denote
Yn ¼ YðtnÞ. The time discrete solution of Eq. (10) is given by

Ynþ1 ¼ UðsÞYn: ð11Þ

The construction of explicit polynomial integrators for problems of type Eq. (9) is based on the approximation of the time
evolution operator UðsÞ, which can be expressed in a degenerate kernel form

UðsÞ ¼
X1
m¼0

gmðsÞPmðHÞ; ð12Þ

where PmðHÞ is a polynomial of order m and gmðtÞ is a function of time. In most cases the polynomials PmðHÞ satisfy a three-
term recurrence formula in the form

Pmþ1ðHÞ ¼ ðamHþ bmÞPmðHÞ þ cmPm�1ðHÞ; ð13Þ

where the coefficients am; bm and cm depend on Pm and its order m. Thus, to find the vector Ynþ1, we just need to sum suc-
cessively the terms of the series (12), using Eq. (13) for calculation of the subsequent terms, until we reach some predefined
value M of m, which can be determined by the required precision. The number M of terms in the sum depends on the poly-
nomial used and on the size of the time step for which the propagator is needed.
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In what follows, we are performing formal manipulations using functions of the matrix H. All these functions are defined
by the spectral decomposition [11]

f ðHÞYn ¼
XN

l¼0

wlf ðklÞhwy
l ;Y

ni; ð14Þ

where hx; yi ¼ xyy denotes the inner product of the vectors x and y; wl is an eigenfunction of H corresponding to the eigen-
value kl, and N is the dimension of spectrum ofH. If we choose f ðHÞ ¼ expðsHÞ in Eq. (14) and in the resulting expression we
replace expðsHÞ with the right-hand side of Eq. (12), we obtain

expðsHÞYn ¼
XN

l¼0

wl

X1
m¼0

gmðsÞPmðklÞhwy
l ;Y

ni: ð15Þ

Interchanging the sums and using the definition, PmðHÞYn ¼
PN

l¼0wlPmðklÞhwyl ;Y
ni, allows us to write Eq. (15) as

expðsHÞYn ¼
X1
m¼0

gmðsÞPmðHÞYn: ð16Þ

The right-hand side of Eq. (16) is now well defined, since there is not ambiguity in the meaning of matrix polynomials. How-
ever, since we use the spectral decomposition in the derivation, we must make sure that the polynomial PmðklÞ is well de-
fined. We will clarify this issue in the next sections. Now, assuming expðsHÞYn has the following polynomial approximation
of order M

expðsHÞYn �
XM

m¼0

gmðsÞPmðHÞYn; ð17Þ

the following algorithm can be used to compute an approximation to expðsHÞYn:

Algorithm 1. Approximating expðsHÞYn by polynomial expansions

Input: the fixed time step s
1: Compute the truncation order M
2: p0 ¼ P0ðHÞYn; p1 ¼ P1ðHÞYn

3: z1 ¼ g0ðsÞp0 þ g1ðsÞp1
4: for m ¼ 1 to M � 1 do
5: pmþ1 ¼ amHpm þ bmpm þ cmpm�1

6: zmþ1 ¼ zm þ gmþ1ðsÞpmþ1

7: end for
8: return zM � expðsHÞYn

The Algorithm 1 uses Eq. (13) in line 5 and Eq. (17) in lines 3 and 6. IfH is a 2Ng � 2Ng matrix with NzðHÞ non-zero entries,
then Algorithm 1 entails a computational cost of about 14Ng þ 2NzðHÞ operations per pass through the for-loop. Two vectors
are needed to store pm and pm�1. These are exchanged to the pair pm; pmþ1 in the next step, which can be carried out in a
constant number of operations by redirecting pointers rather than copying data. Another vector is needed to perform the
matrix–vector (matvec) product Hpm and another one to store the solution zM . This brings the total number of vectors to
four and the computational work per time step to M matvecs.

Finally, it is worth noting that the polynomial integrator can be used as one-step method by getting the solution at the
final time directly from the initial data. It can also be used as a marching scheme if one is interested in intermediate results
(e.g., for comparisons with standard leap-frog or Runge–Kutta schemes). The size of the time step depends only on the infor-
mation one wants to get out of the numerical procedure. The parameter M is then determined accordingly. The refinement of
the scheme is then based on increasing the parameter M and not by decreasing the time step.

4. Faber polynomial integrators

As mentioned in the introduction, the Chebyshev polynomial integrator is, in general, well-suited only when the Hamil-
tonian matrix H in Eq. (9) is skew-symmetric, that is, when the boundaries of the domain are assumed to be PEC and the
material is non-conductive. In this section we discuss the modifications required to extend the polynomial integrator
schemes to include the treatment of absorbing boundaries (i.e., Ca – ;) and/or non-conductive materials (i.e., Mr – 0).
We shall construct time integrators based on the development of UðsÞ in a series of Faber polynomials which are generally
appropriate when the eigenvalues of H are defined in the complex plane. In the remainder of this paper, s refers to the nor-
malized time step which is related to the physical time step, dt, as dt ¼ s=c0, where s has units of meters (m) and dt has units
of seconds (s). Here c0 ¼ ðe0l0Þ

�1=2 � 3� 108 m=s represents the dimensional vacuum speed of light with e0 and l0 being the
vacuum permittivity and permeability, respectively.
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4.1. Motivating example

Let us begin with an example to illustrate the advantages of using polynomials with a complex variable. We consider the
propagation of a Gaussian pulse in a 1D cavity, x 2 ½�2;2�, with absorbing boundary conditions at the endpoints x ¼ 	2. Fur-
thermore, we assume that x ¼ 0 represents an interface between the two halves of the cavity and that each half is a different
homogeneous material. For simplicity we assume the materials are nonmagnetic (i.e., l1 ¼ l2 ¼ 1) and the positive region is
occupied by the vacuum (i.e., e1 ¼ 1 if x > 0) while the remaining region is filled with a glass (i.e., e2 ¼ 4 if x 6 0). The exact
time-domain solution of this problem can be found in [1,29]. At time T ¼ 0 ns, the pulse is located at x ¼ 1 (i.e., in the vac-
uum region) and propagates from right to left as shown on the left of Fig. 1. The computational domain, ½�2;2�, is discretized
into non-uniform grid where the cell sizes of the glass region are twice finer than those of the vacuum region. The global grid
contains 72 cells which corresponds to 6 points per wavelength. We stop the simulation when the excitation pulse goes
through the material interface, i.e., at time T = 5 ns. We shall compare the exact solution with the results obtained by using
the DG method combined with the Chebyshev time scheme (DG-CH scheme). The DG-CH scheme can be written as

Ynþ1 ¼ UðsÞYn; where UðsÞ ¼
X1
m¼0

im�mJmðskHk2ÞTmðHscÞ; ð18Þ

where Jmð�Þ is the mth order Bessel function of the first kind, �0 ¼ 1 and �m ¼ 2 for m > 0; Hsc ¼ �iH=kHk2 is the scaled ma-
trix, and TmðHscÞ are the Chebyshev polynomials of the first kind, defined by the three-term recurrence relation:
Tmþ1ðHscÞ ¼ 2HscTmðHscÞ � Tm�1ðHscÞ, with T0ðHscÞ ¼ I and T1ðHscÞ ¼ Hsc. The series in Eq. (18) converges if m ¼ M >

eskHk2=2, where M is the truncation order. The right graph of Fig. 1 displays results obtained by using interpolation orders
p ¼ 2 and p ¼ 6, and integrated until final time with the time step dt ¼ 0:1 ns. We can see that the DG-CH scheme leads to a
large error in the vacuum region and the solution becomes less accurate when increasing p from p ¼ 2 to p ¼ 6. In order to
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Fig. 1. On the left we plot the initial condition, Eðx; t ¼ 0Þ ¼ expð�50ðx� 1Þ2Þ, of the Gaussian pulse in the 1D cavity with a material interface located at
x ¼ 0 and with Silver-Müller absorbing boundary conditions (ABC) at the endpoints x ¼ 	2. The pulse propagates from the vacuum to glass regions. On the
right we compare solutions for the E-field component to the 1D Maxwell equation, computed using the DG-CH scheme when the pulse goes through the
material interface. The solid line represents the exact solution while dashed and dotted lines are for DG-CH scheme with p ¼ 2 and p ¼ 6, respectively.
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Fig. 2. Structure of the eigenvalue spectrum, k, of the matrix H for p ¼ 2; 4; 6 and absorbing boundary conditions.
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understand this loss of accuracy in the DG-CH scheme, we show in Fig. 2 the eigenvalue spectrum of the Hamiltonian matrix
H for different p. We note in particular that the eigenvalues are distributed symmetrically with respect to the real axis. Note
also that some of the eigenvalues, k, are complex numbers with ReðkÞ – 0 and ImðkÞ– 0. Moreover the eigenvalues of Hsc all
lie in the rectangle ½�1;1� � ½�a; b�, where a < 1 and b < 1, as illustrated in Fig. 3. When applied the DG-CH scheme we need
to calculate the matrix polynomial TmðHscÞ in Eq. (18). According to the spectral decomposition, Eq. (15), this can be accu-
rately done if TmðkscÞ (where ksc is an eigenvalue of the matrixHsc) is well defined, which is not the case in the present exam-
ple since the Chebyshev polynomial is applied to RðkscÞ instead of ksc, which is not true if ksc is a complex number. Here, the
evaluation of UðsÞ with Chebyshev polynomials for M ¼ eskHk2=2 leads to non-convergent results for all p. We have in-
creased M by about 300% to obtain an accuracy of 10�2 and 10�1 for p ¼ 2 and p ¼ 6, respectively. To remedy this, we must
use polynomials defined in the complex plane like Faber polynomials as described in the following sections and to modify
the underlying scheme accordingly.

4.2. General aspects

Let G be a closed bounded continuum (not a single point) in the complex z-plane such that Gc , the complement of G, is sim-
ply connected in the extended z-plane and contains the point at infinity (e.g., a polygon, an ellipse, etc.). The Riemann mapping
theorem asserts that there exists a conformal mapping w ¼ !ðzÞ which maps Gc onto fw : jwj > qg, the exterior of a closed
disk of radius q in the w-plane, and satisfies the conditions !ð1Þ ¼ 1 and !0ð1Þ ¼ 1 [30, Chapter 1, pp. 8–13]. The function
!ðzÞ has a Laurent expansion of the form

!ðzÞ ¼ zþ
X
mP0

bmz�m;

about the point at infinity. The constant q is called the logarithmic capacity or transfinite diameter of G. For a given positive
integer m, the Faber polynomial of degree m; FmðzÞ ¼ zm þ . . ., is obtained by deleting all negative powers of z from the cor-
responding Laurent expansion of ½!ðzÞ�m. Let WðwÞ be the inverse of !ðzÞ. Then WðwÞmaps the domain fw : jwj > qg confor-
mally onto Gc and has a Laurent expansion at infinity

WðwÞ ¼ wþ
X
mP0

cmw�m; ð19Þ

where cm ¼ 1=bm. The family of Faber polynomials fFmðzÞg1m¼0 associated with the conformal mapping WðwÞ can be defined
by a generating function

W0ðwÞ
WðwÞ � z

¼
X1
m¼0

FmðzÞ
wmþ1 ; jwj > q; z 2 G;

and satisfies the recurrence relation

Fmþ1ðzÞ ¼ zFmðzÞ �
Xm

j¼0

cjFm�jðzÞ �mcm; m P 0; F0ðzÞ ¼ 1: ð20Þ

This formula is particularly useful for polygonal regions for which the expansion of W may be obtained by means of the
Schwarz-Christoffel transformation.

Any function f ðzÞ that is analytic inside G can be uniquely expanded into a series of Faber polynomials

f ðzÞ ¼
X1
m¼0

cmFmðzÞ; z 2 G; ð21Þ
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Fig. 3. Structure of the eigenvalue spectrum, k, of the matrix Hsc ¼ �iH=kHk2 for p ¼ 2; 4; 6 and absorbing boundary conditions.
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where the coefficients cm are called Faber coefficients with respect to G; they are defined as

cm ¼
1

2pi

Z
jwj¼R

f ðWðwÞÞ
wmþ1 dw; R > q; ð22Þ

where the circle CR ¼ fw : jwj ¼ Rg can be replaced by any closed rectifiable Jordan curve CR such that CR 
 Gc [ f1g; z 2 CR.
In particular, we can choose CR to be the image under z ¼ !ðwÞ of CR. Here, the number R is chosen sufficiently small that f
can be extended analytically to CR. If W can be extended continuously to Cq, then the value R ¼ q is also acceptable. We note
that the Faber series, Eq. (21), converges uniformly and absolutely to f on every region bounded by CR to which f can be ex-
tended analytically [30, pp. 108-112]. For some continuum G, one can get some special family of Faber polynomials. For in-
stance, for the unit disk the Faber polynomial of degree m is zm and the corresponding Faber series for an analytic function is
its Taylor series about the origin. Multiples of the Chebyshev polynomials are the Faber polynomials for an ellipse with foci at
z ¼ 	1, and, in particular, for the real interval ½�1;1�. Full details of the theory of Faber polynomials and their approximating
properties can be found in the standard books of Markushevich [30, Chap. 3] and Gaier [31, Chap. l] and the other important
references cited there.

4.3. The Faber algorithm

Let C be the boundary of G. The Faber polynomial algorithm for solving the initial value problem in Eq. (9) is as follows.
First, choose a Jordan curve C that encloses the spectrum of the Hamiltonian matrix H. Next, find the corresponding confor-
mal mapping W. Finally, compute the Faber coefficients, cmðsÞ, by means of Eq. (22) where f ðzÞ ¼ expðszÞ. Once the coeffi-
cients cmðsÞ are evaluated, the discrete solution is calculated as

Ynþ1 ¼
X1
m¼0

cmðsÞFmðHÞYn;

and the action of the Faber polynomials on Yn is computed using the relation in Eq. (20) as

Fmþ1ðHÞYn ¼ HFmðHÞYn �
Xm

j¼0

cjFm�jðHÞYn �mcmYn: ð23Þ

However, this relation is, in general, unstable since the norm of the Faber polynomials growth rapidly with their orders,
kFmðzÞk1 6 qmV=p (see [32]). Here k � k1 denotes the uniform norm, kfk1 ¼maxz2Gjf ðzÞj, and V ¼

R
C jdhðzÞjP 2p, where

hðzÞ is the angle between the positive real axis and a tangent line to C. If G is convex, then V ¼ 2p. To avoid this instability,
the matrixH has to be scaled so that its spectrum lies inside the domain whose logarithmic capacity q 6 1. If kF is the scaling
factor, then expðsHÞ ¼ expð~sHscÞ, where Hsc ¼ H=kF and ~s ¼ kFs. The scaling factor kF should be chosen as small as possible
to allow for larger time steps s. In the following, we choose q ¼ 1 and the curve C is taken to be an ellipse tightly enclosing
the complex spectrum of H. It is well known that, under these circumstances, the conformal mapping, WðwÞ, in Eq. (19) is
finite (i.e., it terminates) [30], and has the form

WðwÞ ¼ wþ c0 þ c1=w; c1 – 0; ð24Þ

where c0 ¼ x0 þ iy0 is the center of the ellipse whose minor and major semi-axis a ¼ qþ c1=q and b ¼ q� c1=q, respectively.
The logarithmic capacity of an ellipse is q ¼ ðaþ bÞ=2. For q ¼ 1, we have c1 ¼ 1� b and b ¼ 2� a. Thus, the recursion rela-
tion for the Faber polynomials, Eq. (23), becomes

Fmþ1ðHscÞYn ¼ ðHsc � c0IÞFmðHscÞYn � c1Fm�1ðHscÞYn; m > 0; ð25Þ

where F0ðHscÞYn ¼ Yn and F1ðHscÞYn ¼ ðHsc � c0IÞYn. Then the discrete solution is given by

Ynþ1 ¼
X1
m¼0

cmð~sÞFmðHscÞYn;

where the Faber coefficients can be solved analytically as

cmð~sÞ ¼
1

2pi

Z
jwj¼1

exp½~sWðwÞ�w�ðmþ1Þdw ¼ 1
2p

Z 2p

0
exp½~sWðeihÞ�e�imhdhðw ¼ eihÞ

¼ �iffiffiffiffiffic1
p
� �m

expð~sc0ÞJm 2~s
ffiffiffiffiffiffiffiffiffi
�c1

p� �
: ð26Þ

Here we have used the identity exp½zðsþ a=sÞ=2� ¼
P1

k¼�1ðs=i
ffiffiffi
a
p
ÞkJkði

ffiffiffi
a
p

zÞ; s; a 2 C, and the Cauchy residue theorem to the
contour integral involved. Note that, for the conformal mapping, Eq. (24), the Faber polynomials generated by Eq. (25) are

related to Chebyshev polynomials of the first kind, TmðzÞ, by FmðzÞ ¼ 2ðc1Þ
m=2Tm ðz� c0Þ=

ffiffiffiffiffiffiffiffi
4c1

p� �
;m P 1.

Choice of the optimal ellipse. As we have already mentioned, the spectrum of the matrixH is symmetric with respect to the
real axis. Hence, we set y0 ¼ 0. This spectrum lies in a rectangle ½v1;v2� � ½�‘; ‘� with constants v1;2 and ‘ to be determined
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below. The strategy is to find an ‘‘optimal’’ ellipse that contains a scaled rectangle ½vsc
1 ;vsc

2 � � ½�‘
sc; ‘sc�, where vsc

1;2 ¼ v1;2=kF

and ‘sc ¼ ‘=kF .
Let WðHÞ denote the field of values (or numerical range) of the matrix H, that is, WðHÞ ¼ fzyHz=zyz : z 2 Cn; z – 0g. Like

the spectrum of a matrix, the field of values is a set that can be used to learn something about the matrix. In the case whereH
is nonnormal, WðHÞ can give information that the spectrum alone cannot give. For a comprehensive overview of the theory
of the field of values we refer to [33, Chap. 1]. Now we derive the bounds, v1;2 and ‘, for the field of values and the spectrum of
H which is a non-Hermitian matrix. Any matrix H can be split into two Hermitian matrices as H ¼ RðHÞ þ iIðHÞ, where
RðHÞ ¼ ðH þHyÞ=2 and IðHÞ ¼ ðH �HyÞ=2i. Then, the field of values ofH is WðHÞ ¼WðRðHÞ þ iIðHÞÞ. Since the field of val-
ues of a Hermitian matrix is real, we have the following properties for the real and imaginary parts of the field of values of a
non-Hermitian matrix [33, pp. 9-10]

ReðWðHÞÞ ¼WðRðHÞÞ and ImðWðHÞÞ ¼WðIðHÞÞ:

Here Re and Im are used to denote the real and imaginary parts of a set, respectively. Hence, bounds on WðRðHÞÞ and on
WðIðHÞÞ amount to a bounding box in the complex plane for WðHÞ. Since the spectrum of H is contained in WðHÞ, the same
box gives bounds on the eigenvalues of H

kRðHÞ
min 6 ReðkHÞ 6 kRðHÞ

max and kIðHÞ
min 6 ImðkHÞ 6 kIðHÞ

max ;

where kH is an eigenvalue ofH and the subscripts min and max refers to a minimal and a maximal value, respectively. More-
over, since the matrix IðHÞ has the form

IðHÞ ¼ �i
0 ~S

�~Sy 0

 !
;

we have that kIðHÞ
min ¼ �kIðHÞ

max . Then, we choose the parameters v1;2 and ‘ as

v1 ¼ kRðHÞ
min ; v2 ¼ kRðHÞ

max ; ‘ ¼ kIðHÞ
max : ð27Þ

The center of the ellipse coincides with that of the rectangle then c0 ¼ ðvsc
1 þ vsc

2 Þ=2. Since the vertices of the scaled rectangle
lies in the ellipse, the following condition holds

b2

a2 ¼
b2 � ð‘scÞ2

c2
sc

; csc :¼ vsc
2 � vsc

1

2

����
����:

This condition gives a relation between b and the scaling factor kF .
Choice of the scaling factor. Let FM be the Faber projection obtained by truncating the Faber series, i.e.,

FMðf ÞðzÞ ¼
PM

m¼0cmFmðzÞ. The truncation order, M, can be determined by requiring that the Faber coefficients decay exponen-
tially, e.g., for M P e~s. The projection FM is a bounded linear operator which satisfies FMðpMÞ ¼ pM for any polynomial pM of
degree M. The error bound for truncated Faber series is given by (see [32])

kf � FMðf Þk1 ¼
V
p
ðq=RÞMþ1

1� q=R
max
z2CR

jf ðzÞj:

In our experiments, G is an ellipse (which is convex V ¼ 2p) with q ¼ 1 and symmetric with respect to the real axis. For the
exponential function it can be proved following [22] that

k exp�FMðexpÞk1 ¼
2
e

1þ a
a

exp½~sðc0 þOð1=MÞÞ� e
M

� 	Mþ1
; M P 1þ a; ð28Þ

for any a > 0. Hence, the Faber series converges exponentially as the truncated order M increases. To avoid the exponential
growth of the factor exp½~sðc0 þOð1=MÞÞ� and to allow for larger time steps s ¼ ~s=kF , the scaling factor kF must be minimal.
The idea is to construct the minimum-area ellipse circumscribed to the scaled rectangle ½vsc

1 ;vsc
2 � � ½�‘

sc; ‘sc� such that kF is
minimal. One can show that the ellipse with center c0 and

c1 ¼
c2=3

sc þ ‘2=3
sc

� 	
c4=3

sc � ‘4=3
sc

� 	
4q

; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

sc þ ‘scc2
sc

� �2=3
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2

sc þ csc‘
2
sc

� �2=3
q

2
; ð29Þ

is that circumscribed to the scaled rectangle with minimal area and smallest capacity [34]. Since q ¼ 1, the smallest kF is
reached when b2 ¼ ‘2

sc þ csc‘
2
sc

� �2=3
, or

b
a
¼ ‘sc

csc

� �2=3

¼ ‘

c

� �2=3

; c :¼ v2 � v1

2

��� ���:
Substituting a ¼ 2� b in the above equation we find the scaling factor

kF ¼
ð‘2=3 þ c2=3Þ3=2

2
: ð30Þ
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Finally, the Faber algorithm for approximating expðsHÞYn is summarized in Algorithm 2.

Algorithm 2. Approximating expðsHÞYn by Faber polynomials

input: the fixed time step s
input: the matrix H
1: Compute RðHÞ ¼ ðH þHyÞ=2 and IðHÞ ¼ ðH �HyÞ=2i
2: Compute v1;2 and ‘ using Eq. (27)
3: Compute the scaling factor kF using Eq. (30)
4: Compute c0 ¼ ðv1 þ v2Þ=2kF and c1 using Eq. (29)
5: Compute the Faber coefficients cmð~sÞ using Eq. (26)
6: Choose the truncation order M, such that M P ekFs
7: p0 ¼ F0ðHscÞYn; p1 ¼ F1ðHscÞYn

8: z1 ¼ c0ð~sÞp0 þ c1ð~sÞp1
9: for m ¼ 1 to M � 1 do
10: pmþ1 ¼ Hscpm � c0pm � c1pm�1

11: zmþ1 ¼ zm þ cmþ1ð~sÞpmþ1

12: end for
13: return zM � expðsHÞYn

5. Numerical results

In this section, we provide three numerical examples to illustrate the accuracy and capability of the Faber scheme devel-
oped in the previous section. For the last two examples, we compare the Faber scheme with the fourth-order leap-frog (LF4)
time scheme developed in [35]. The LF4 scheme can be written as

Ynþ1 ¼ Yn�1 þ 2sGðsÞYn; where GðsÞ ¼ H þ s2H3=6:

The LF4 scheme is stable if the time step satisfies s 6 2
1
3 þ 2

2
3

� 	
=kHk2 ’ 2:847=kHk2. The computational work of the LF4

scheme per time step mainly consists of three matrix–vector products and the algorithm to compute Ynþ1 involves the stor-
age of four vectors ðYn�1;Yn;HYn;YH ¼ Yn þHYnÞ.

5.1. Gaussian pulse propagation in an absorbing dielectric medium

We consider the example of the Gaussian pulse already treated in Subsection 4.1 and we apply the Faber propagation
scheme associated with an elliptic contour. The time step is fixed to dt ¼ 1 ns (i.e., s ¼ 0:3 m) and the simulation time is
T ¼ 5 ns. In Fig. 4 we show the elliptic contours that contain the eigenvalue spectrum of the scaled Hamiltonian
Hsc ¼ H=kF for p ¼ 2 and p ¼ 6. The truncation order, M, of the Faber polynomial approximation is set by the exponential
decay of the Faber coefficients, cm, in Eq. (26). Fig. 5 shows the behavior of jcmj (the modulus of cm) together with the approx-
imation error for the truncated Faber expansion, Eq. (28), as a function of M. The modulus of cm is bounded by 1 and decays
exponentially from M ¼ ~s ¼ kFs on. The approximation error is constant until M ¼ ~s and then starts to decrease. The choice
of M in the interval ½1:3~s;2~s� gives an error which ranges in the interval [10�10,10�15]. Taking more than 2~s terms has no
impact on improving the accuracy. In the present case, we use M ¼ 70 for p ¼ 2 and M ¼ 230 for p ¼ 6. In Fig. 6 we compare
the exact solution for the E-field with those obtained by the DG-Faber method. It is particularly noteworthy how much
improvement there is in the accuracy of the phase error when increasing the order of approximation from p ¼ 2 to p ¼ 6.

5.2. Plane-wave scattering by a dielectric circular cylinder

As a more challenging problem, let us consider the scenario shown on Fig. 7 in which a plane wave with frequency
F = 300 MHz impinges on a dielectric cylinder, experiencing reflection and refraction at the material interface. The problem
is solved in a total field formulation [1]. The exact time-domain solution of this problem is given in [29, p. 666]. The cylinder
has a radius of r0 ¼ 0:6 m and bounds a nonmagnetic material with a relative permittivity er ¼ 8. The surrounding medium is
assumed to be vacuum, i.e., er ¼ lr ¼ 1. The computational domain X is bounded by a square of side length 3.2 m centered at
(0,0). A Silver-Müller absorbing condition is applied on the boundary of the square. We use a fully bodyconforming grid with
a total of 2527 vertices and 4896 elements, having an average edge length of 0.2 wavelength, as illustrated in Fig. 7. The
physical simulation time has been set to 9 periods (T = 33 ns) of the incident wave. To ensure a proper representation of
the curved boundaries, and to eliminate the geometrical error, we apply a high-order geometrical mapping for elements near
the curvilinear boundaries while the interior elements are treated with affine mapping [27]. We compare the Faber scheme
with the LF4 scheme for different p. For the LF4 scheme we use the maximum time step allowed by the stability condition
which is given by dt ¼ s=c0 where s ¼ 2:847=kHk2 with kHk2 � 617; 2609; 4808; 8358 for p ¼ 2; 3; 4; 5, respectively. For
the Faber scheme we fix the time step dt ¼ 1 ns for all p then we calculate the truncation order M ¼ 1:3skF where the scaling
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factor kF � 379; 1601; 2950; 5128 for p ¼ 2; 3; 4; 5, respectively. Results are gathered in Table 1 in terms of accuracy and
computational effort for simulations conducted on a Dell Precision M90 workstation equipped with an Intel Core processor
and 2 GB of RAM. For a given p, the Faber scheme yields 1–3 orders of magnitude improvement in accuracy over the LF4

scheme. The memory storage required by both schemes is similar while the Faber scheme requires almost 1.35 times less
CPU time than the LF4 scheme. This improvement in CPU time is due to the scaling factor kF being 1.6 times smaller than
kHk2, which reduces the number of truncation order, M, in the Faber series. Furthermore, to achieve a given accuracy, the
Faber scheme yields a considerable saving in computational effort. Careful inspection of the computational results in Table 1
confirms this. Finally, contour lines of the Ez component for numerical simulations performed with the LF4 and Faber
schemes, are illustrated in Fig. 8 using the interpolation order p ¼ 2.

5.3. Exposure of human head tissues to a localized source radiation

As a final example, we consider the application of the Faber propagation scheme to the simulation of a considerably more
challenging problem involving an irregularly shaped and heterogeneous medium with conductive materials. The problem
under consideration is concerned with the propagation of an EM wave emitted by a localized source in a realistic geometrical
model of head tissues. Starting from magnetic resonance images of the Visible Human 2.0 project [36], head tissues are seg-
mented and the interfaces of a selected number of tissues are triangulated. Different strategies can be used in order to obtain
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Fig. 4. We show the elliptic contour (dotted line) used in the simulation of the Gaussian pulse for p ¼ 2 (left) and p ¼ 6 (right). This contour circumscribes
the scaled rectangle (solid line) that encloses the numerical range (dashed line) of the scaled Hamiltonian Hsc ¼ H=kF where kF ¼ 117:85 for p ¼ 2 and
kF ¼ 568:44 for p ¼ 6. We can see that the numerical range gives bounds on the eigenvalues (filled circle), k, of Hsc. The logarithmic capacity is one, q ¼ 1,
and the corresponding conformal mapping, Eq. (24), reads WðwÞ ¼ wþ 0:1432� 0:2827=w for p ¼ 2 and WðwÞ ¼ wþ 0:1616� 0:2224=w for p ¼ 6.
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m¼0cmð~sÞFmðHscÞjj1 , versus the truncation order M for p ¼ 2 and p ¼ 6. The vertical dotted lines represent the scaled time step ~s ¼ kFs.
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Fig. 6. We compare the exact solution (solid line) of the Gaussian pulse with solutions obtained using the DG method based on Faber polynomial integrator
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Fig. 7. Starting from the left, the computational domain and problem setup for the scattering example is depicted in the first graph. In the center is shown
the finite element grid, consisting of 4896 triangles, used for computing scattering by a dielectric cylinder of size 0.6 m. A zoom of the boundary of the
cylinder in the right figure illustrates the bodyconforming nature of the mesh.

Table 1
Computational effort and L2-errors when the LF4 and Faber time-stepping schemes are applied to the scattering problem with interpolation order p after
integrating over time T ¼ 33 ns. For each case, we give the number of matrix vector products (# matvecs), the CPU time (CPU) in minutes, and the memory
usage (RAM) in Megabytes to achieve the final time period. For the Faber scheme, the CPU time also includes the time for computing the parameters given in
lines 1–5 of Algorithm 2.

Scheme (p = 2) dt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.538E-02 2.02E-02 6438 28 38.83
Faber 1.000E-00 1.63E-03 4851 20 39.91

Scheme (p = 3) dt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 3.638E-03 2.75E-03 27216 197 91.72
Faber 1.000E-00 6.78E-05 20592 145 93.51

Scheme (p = 4) dt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.974E-03 9.52E-04 50157 556 173.38
Faber 1.000E-00 2.53E-06 37950 413 176.07

Scheme (p = 5) dt (ns) Error on (E,H) # matvecs CPU (min) RAM (MB)

LF4 1.135E-03 5.12E-05 87192 1404 248.95
Faber 1.000E-00 8.56E-08 65967 1036 252.71
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a smooth and accurate segmentation of head tissues and interface triangulations as well. The strategy adopted in this exam-
ple consists in using a variant of Chew’s algorithm [37], based on Delaunay triangulation restricted to the interface, which
allows to control the size and aspect ratio of interface triangles. Example of triangulations of the skin and skull are shown in
Fig. 9. Then, these triangulated surfaces together with a triangulation of the artificial absorbing boundary of the overall com-
putational domain are used as inputs for the generation of volume meshes. Finally, the GHS3D tetrahedral mesh generator
[38] is used to mesh the volume domains between the various interfaces. The exterior of the head must also be meshed, up to
a certain distance from the skin. The computational domain is here artificially bounded by a sphere on which the Silver-
Müller condition is imposed. Overall, the constructed geometrical model considered here consists of four tissues (skin, skull,
CSF – Cerebro Spinal Fluid, brain) and the global tetrahedral mesh consists of 60,590 vertices and 361,848 tetrahedra. The
minimum, maximum and average lengths of the mesh edges are equal to 1.85 mm, 45.37 mm and 11.36 mm, respectively.
The characteristics of the tissues are summarized in Table 2 where the values of the relative permittivity er , and the conduc-
tivity r, correspond to a frequency F = 1800 MHz and have been obtained from a special purpose online data base. For all
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Fig. 8. Contour lines of Ez component for the exact solution (left) and for solutions resulting from the Faber (center) and LF4 (right) schemes.

Fig. 9. Surface mesh of the skin (left) and the skull (right).

Table 2
Electromagnetic characteristics of the selected head tissues at frequency F = 1800 MHz.

Tissue er r (S/m) Wavelength (mm)

Skin 38.87 1.18 26.73
Skull 15.56 0.43 42.25
CSF 67.20 2.92 20.33
Brain 43.55 1.15 25.26
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tissues, the relative permeability, lr , is set to 1. Finally, a dipolar type source is localized near the right ear of the head yield-
ing a current of the form Jzðx; tÞ ¼ dðx� xdÞf ðtÞ, where f ðtÞ is a sinusoidally varying temporal signal and xd is the localization
point of the source. The physical simulation time has been fixed to five periods of the temporal signal. A discrete Fourier
transform of the components of the electric field is computed during the last period of the simulation. Contour lines of
the modulus of the electric field, jEj, on selected planes of the skin for the approximate solutions resulting from the Faber
and LF4 schemes are visualized in Fig. 10 using the interpolation order p ¼ 2. The Faber scheme produces a smoother solution
around the right ear of the head (here the error between both solutions is about 10%). The time step used in the simulations
are dt ¼ 0:00103 ns for LF4 scheme and dt ¼ 0:1 ns for Faber scheme. The corresponding truncation order in the Faber
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Fig. 10. Contour lines of the modulus of the electric field, jEj, in selected cut planes of the head, using the Faber (top) and LF4 (bottom) schemes.
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Fig. 11. Time evolution of the Ez component at selected points in free space (left) and in the brain (right).

H. Fahs / Applied Mathematical Modelling 36 (2012) 5466–5481 5479



Author's personal copy

expansion is chosen as M ¼ 1:3skF with kF � 5171. For the sake of completeness, we compare in Fig. 11 the time evolution of
the Ez component at two selected points in the free space near the ear and in the brain. With such comparisons, the advan-
tage of the Faber scheme over the LF4 scheme is more remarkable. Finally, we give some informations on the simulation
times required by both schemes. On a workstation equipped with an Intel Xeon 2.33 GHz processor and 32 GB of RAM,
the LF4 scheme requires 10 h 18 min for a total of 2695 time steps, while the Faber scheme requires 6 h 31 min for a total
of 28 time steps. We obtain that in this case the Faber scheme is 1.6 times less costly than LF4 scheme for a given mesh. This
gain could be larger since the LF4 scheme would have required a very fine mesh or high-order interpolation order yielding a
huge computation time to obtain the same kind of accuracy. We have run the LF4 scheme on the same mesh for p ¼ 3, the
simulation time is 45 h 44 min for a total of 4826 time steps, and the error with the Faber solution is reduced to 3.7%.

6. Concluding remarks

We have continued the development of a new family of high-order time-stepping schemes for time-domain electromag-
netics and discussed its properties and implementation in a high-order discontinuous Galerkin method. First, the discretized
Maxwell equations are written in a Hamiltonian form. This leads to a time-continuous problem in the form of an initial-value
problem for a system of first-order ODEs. Then the time integration method considered here is based on the expansion of the
time evolution operator in a series of Faber polynomials. The proposed expansion is suitable for non-Hermitian Hamiltonian
matrices,H, and, hence, the proposed time integrator can handle absorbing media and conductive materials. The Faber algo-
rithm consists of three ingredients. First, the choice of the optimal ellipse that encloses the spectrum of H. Next, the calcu-
lation of the corresponding conformal mapping. Finally, the evaluation of the coefficients of the Faber series. We have
implemented this algorithm in one, two and three space dimensions. The Faber scheme converges spectrally when increas-
ing the polynomial degree. Compared to the fourth-order leap-frog scheme, the Faber method is more accurate and allows to
reduce significantly the overall computing time and memory overhead. However, despite these encouraging results, some
points still deserve to be addressed in order to improve the Faber algorithm. For instance, the optimization of the Jordan con-
tour, C, that encloses the spectrum of H. This should decrease the truncation order in the Faber expansion and consequently
reduce the computational effort of the algorithm. In the present paper, C is chosen to be an ellipse since the associated Faber
polynomials have the shortest (three-term) recurrence relation. This ellipse is obtained from the field of values of H which
provides bounds of the eigenvalue. One should improve the bounds of the real part of the eigenvalues in order to obtain a
tighter ellipse. Finally, it is worth pointing out that only the ohmic current term, rE, is considered in the Maxwell equations,
Eq. (2). However, external currents such as time-dependent sources can also be handled by the Faber method, but this still
requires further research. We plan to address these issues in future work.
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