A discontinuous Galerkin method for solving the 2D time-domain Maxwell's equations on non-conforming locally refined meshes

Hassan Fahs*, Stéphane Lanteri* and Francesca Rapetti[†]

* INRIA, CAIMAN project, Sophia Antipolis, † UNSA, Dieudonné Lab., Nice (France)

Hassan.Fahs@inria.fr

- General introduction

Summary

This work is concerned with the design of a hplike discontinuous Galerkin (DG) method for solving the 2D time-domain Maxwell's equations on non-conforming locally refined triangular meshes. The proposed DG method allows non-conforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leapfrog time integration scheme.

The *hp***-like DGTD method**

- Combines *h*-refinement with *p*-enrichment
- Consists in using high polynomial orders (p_c) in the coarse mesh and low order (p_f) in the fined one (e.g. the refined elements)
- The resulting scheme is called the DGTD- $\mathbb{P}_{p_{c}}$: $\mathbb{P}_{p_{f}}$ method
- If $p_c = p_f = p$, the scheme is named the DGTD- \mathbb{P}_p

II - Stability analysis

NU	Numerical convergence order of the DGTD- \mathbb{P}_p method											
		RMING	MESH	NON-CONFORMING MESH								
p	0	1	2	3		0	1	2	3			
order	0.90	1.90	1.98	1.37		0.99	1.89	2.17	1.78			

Num	Numerical convergence order of the DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method											
NON-CONFORMING MESH												
$p_c p_f$	1:0	2:0	3:0	4:0	2:1	3:1	4:1	3:2	4:2			
order	1.27	1.06	0.98	1.07	1.27	1.01	1.0	2.78	2.24			

 L^2 error against CPU time using DGTD- \mathbb{P}_p method with h-refinement. Non-Conforming (left) and conforming (right) triangular mesh.

Maxwell's equations

The 2D Maxwell's equation in the TM polarization:

- E_z and $\mathbf{H} = (H_x, H_y)$ are respectively the electric and magnetic fields
- ϵ and μ are respectively the electric permittivity and magnetic permeability of the medium; they are assumed to be piecewise constant

Non-conforming locally refined meshes

Non-conforming meshes where triangle vertices can lie in the interior of edges of other triangles

On any non-conforming mesh, the DGTD method exactly conserves the following energy [1]:

$$2\mathcal{E}^n = \sum_i \epsilon_i^{t} \mathbf{E}_{z_i}^n \mathbb{M}_i \mathbf{E}_{z_i}^n + \mu_i^{t} \mathbf{H}_{x_i}^{n-\frac{1}{2}} \mathbb{M}_i \mathbf{H}_{x_i}^{n+\frac{1}{2}} + \mu_i^{t} \mathbf{H}_{y_i}^{n-\frac{1}{2}} \mathbb{M}_i \mathbf{H}_{y_i}^{n+\frac{1}{2}}$$

The energy \mathcal{E}^n is a positive definite quadratic form of all numerical unknowns under the CFL-like sufficient stability condition on the time step Δt :

$$\forall i, \ \forall k \in \mathcal{V}_i, \ c_i \Delta t (2\alpha_i + \beta_{ik}) \le 4 \min\left(\frac{|T_i|}{P_i^x}, \frac{|T_i|}{P_i^y}\right),$$

where c_i is the local speed of propagation, $|T_i|$ is the surface of T_i and $P_i^{\mathbf{x}} = \sum |n_{ik\mathbf{x}}|$. The constants α_i $k \in \mathcal{V}_i$ and β_{ik} ($k \in \mathcal{V}_i$) verify:

$$\begin{cases} \forall \xi_i \in \mathbf{Span}\{\varphi_{ij}, 1 \leq j \leq d_i\}, \ \mathbf{x} \in \{x, y\} \\ \left\|\frac{\partial \xi_i}{\partial \mathbf{x}}\right\|_{T_i} \leq \frac{\alpha_i P_i^{\mathbf{x}}}{|T_i|} \|\xi_i\|_{T_i}, \ \|\xi_i\|_{s_{ik}}^2 \leq \beta_{ik} \frac{\|\vec{n}_{ik}\|}{|T_i|} \|\xi_i\|_{T_i}^2. \end{cases}$$

Numerical CFL of the DGTD- \mathbb{P}_p method										
$p_c = p_f = p$	0	1	2	3	4					
$ u_p^{num}$	1.0	0.3	0.2	0.15	0.1					

error against CPU time using DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method with hp-refined non-conforming triangular mesh

Propagation of a Gaussian pulse

- $\bullet \Omega = [-2, 2] \times [0, 1]$
- $\Omega_1 = [-2, 0] \times [0, 1]$
- = refined zone

• $\mu = 1$ in Ω , $\epsilon = 16$ in Ω_1 , $\epsilon = 1$ in $\Omega \setminus \Omega_1$

- absorbant boundary conditions on $\partial \Omega$
- 3 hanging nodes per nonconforming interface
- errors and CPU times are

• \mathcal{V}_i = set of indices of elements neighboring T_i

• $s_{ik} = T_i \cap T_k$ (the interface)

- p_i is an integer assigned to the element T_i
- h_i is the size of T_i and $h = \max_{T_i \in \mathcal{T}_h} h_i$

Boundary conditions

- PEC (metallic) boundary conditions: $E_z = 0$
- First order Silver-Müller (absorbing) conditions:

 $E_z = c\mu(n_y H_x - n_x H_y)$

Numerical flux and time-integration scheme

- Totally centered numerical fluxes at the interface between elements
- Second order leap-frog time-scheme, i.e. E_z is computed at integer time-stations and H_x and H_{y} at half-integer time-stations

The DGTD scheme The DGTD- \mathbb{P}_{p_i} method writes:

NUMERICAL CFL OF THE DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method											
$p_c: p_f$	1:0	2:0	3:0	4:0	2:1	3:1	4:1	3:2	4:2		
$ u_{p_c:p_f}^{num}$	1.0	0.4	0.3	0.18	0.3	0.25	0.18	0.15	0.15		

III - Convergence analysis

In [2] it is shown that the convergence order of the centered in space and time DGTD- \mathbb{P}_p method, in the case of conforming simplicial meshes, is

 $\mathcal{O}(Th^{\min(s,p)}) + \mathcal{O}(\Delta t^2),$

 Δt is the time step over the interval [0,T] and s > 1/2is such that the solution is sufficiently regular.

Resonance in a PEC cavity

• domain = $[0, 1]^2$
 (1,1)-eigenmode
• freq = 0.212 GHz
$\bullet \epsilon = \mu = 1$

• refined zone = $[0.35, 0.65]^2$

• 7 hanging nodes per nonconforming interface

• errors and CPU times are measured at T = 3 ns

Numerical convergence of the DGTD- \mathbb{P}_p method with *h*-refinement. Non-Conforming (left) and conforming (right) triangular mesh.

17	/ 1	
• frequency =	1 GHz	measured at $T = 5 \text{ ns}$

Numerical convergence order of the DGTD- \mathbb{P}_p method											
	NON-CONFORMING MESH										
p	0	1	2	3		0	1	2	3		
order	1.14	1.47	1.23		1.3	1.18	0.94	0.96			

Numerical convergence order of the DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method											
NON-CONFORMING MESH											
$p_c p_f$	1:0	2:0	3:0	4:0	2:1	3:1	4:1	3:2	4:2		
order	1.3	1.56	1.64	1.76	1.44	1.44	1.57	0.93	0.94		

CPU TIMES (MINUTES) AND NUMBER OF TIME STEPS (#STEP) OBTAINED TO ACHIEVE AN ACCURACY OF 5.0E-04 USING NON-CONFORMING MESH

D	$GTD extsf{-}\mathbb{P}_p$	METHOD		$DGTD extsf{-}\mathbb{P}_{p_c} extsf{:}\mathbb{P}_{p_f}$ method					
p	1	2	3	p_c p_f	2:0	3:2	4:1		
CPU	24	21	15	CPU	18	19	17		
#step	2723	2700	2459	#step	2439	2815	2699		

Concluding remarks

A non-dissipative *hp*-like DGTD method is proposed for solving Maxwell's equations on both conforming and non-conforming locally refined triangular meshes. The unknowns are approximated with discontinuous nodal polynomials of degree that may vary over different elements of the mesh. This method conserves a discrete energy and is stable under a CFL condition. Numerical experiments prove the performance of the DGTD- $\mathbb{P}_{p_{e}}$: $\mathbb{P}_{p_{f}}$ method and show that it can reduce the dispersion errors resulting from the classical DGTD- \mathbb{P}_p ($p \leq 1$) method.

- \mathbb{M}_i is the constant local mass (symmetric positive definite) matrix, and $\mathbb{K}_i^{\mathbf{x}}$ is the constant (skewsymmetric) stiffness matrix
- The vector $\mathbb{F}_{\mathbf{x}_{ik}}^n$ and $\mathbb{G}_{\mathbf{x}_{ik}}^{n+\frac{1}{2}}$ are defined as: $\mathbb{F}_{\mathbf{x}_{ik}}^{n} = \mathbb{S}_{ik}^{\mathbf{x}} \mathbf{E}_{z_{k}}^{n}$ and $\mathbb{G}_{\mathbf{x}_{ik}}^{n+\frac{1}{2}} = \mathbb{S}_{ik}^{\mathbf{x}} \mathbf{H}_{\mathbf{x}_{k}}^{n+\frac{1}{2}}$
- $\mathbb{S}_{ik}^{\mathbf{x}}$ is the $d_i \times d_k$ interface matrix on s_{ik} • For non-conforming interfaces, $\mathbb{S}_{ik}^{\mathbf{x}}$ is computed by using a Gaussian quadrature formula

Numerical convergence of the DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method with hp-refined non-conforming triangular mesh

References

[1] H. Fahs, S. Lanteri, and F. Rapetti, "A *hp*-like discontinuous Galerkin method for solving the 2D time-domain Maxwell's equations on nonconforming locally refined triangular meshes," INRIA, RR 6162, 2007.

[2] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, "Convergence and stability of a discontinuous Galerkin time-domain method for the heterogeneous Maxwell equations on unstructured meshes," M2AN, vol. 39, no. 6, pp. 1149–1176, 2005.